首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An addition sequence problem is given a set of numbers X = {n 1, n 2, . . . , n m }, what is the minimal number of additions needed to compute all m numbers starting from 1? This problem is NP-complete. In this paper, we present a branch and bound algorithm to generate an addition sequence with a minimal number of elements for a set X by using a new strategy. Then we improve the generation by generalizing some results on addition chains (m = 1) to addition sequences and finding what we will call a presumed upper bound for each n j , 1 ≤ j ≤ m, in the search tree.  相似文献   

2.
We analyze the asymptotic behavior of the j-independence number of a random k-uniform hypergraph H(n, k, p) in the binomial model. We prove that in the strongly sparse case, i.e., where \(p = c/\left( \begin{gathered} n - 1 \hfill \\ k - 1 \hfill \\ \end{gathered} \right)\) for a positive constant 0 < c ≤ 1/(k ? 1), there exists a constant γ(k, j, c) > 0 such that the j-independence number α j (H(n, k, p)) obeys the law of large numbers \(\frac{{{\alpha _j}\left( {H\left( {n,k,p} \right)} \right)}}{n}\xrightarrow{P}\gamma \left( {k,j,c} \right)asn \to + \infty \) Moreover, we explicitly present γ(k, j, c) as a function of a solution of some transcendental equation.  相似文献   

3.
Let Ω = AN be a space of right-sided infinite sequences drawn from a finite alphabet A = {0,1}, N = {1,2,…}. Let ρ(x, yk=1|x k ? y k |2?k be a metric on Ω = AN, and μ the Bernoulli measure on Ω with probabilities p0, p1 > 0, p0 + p1 = 1. Denote by B(x,ω) an open ball of radius r centered at ω. The main result of this paper \(\mu (B(\omega ,r))r + \sum\nolimits_{n = 0}^\infty {\sum\nolimits_{j = 0}^{{2^n} - 1} {{\mu _{n,j}}} } (\omega )\tau ({2^n}r - j)\), where τ(x) = 2min {x,1 ? x}, 0 ≤ x ≤ 1, (τ(x) = 0, if x < 0 or x > 1 ), \({\mu _{n,j}}(\omega ) = (1 - {p_{{\omega _{n + 1}}}})\prod _{k = 1}^n{p_{{\omega _k}}} \oplus {j_k}\), \(j = {j_1}{2^{n - 1}} + {j_2}{2^{n - 2}} + ... + {j_n}\). The family of functions 1, x, τ(2 n r ? j), j = 0,1,…, 2 n ? 1, n = 0,1,…, is the Faber–Schauder system for the space C([0,1]) of continuous functions on [0, 1]. We also obtain the Faber–Schauder expansion for Lebesgue’s singular function, Cezaro curves, and Koch–Peano curves. Article is published in the author’s wording.  相似文献   

4.
In the Fixed Cost k-Flow problem, we are given a graph G = (V, E) with edge-capacities {u e eE} and edge-costs {c e eE}, source-sink pair s, tV, and an integer k. The goal is to find a minimum cost subgraph H of G such that the minimum capacity of an st-cut in H is at least k. By an approximation-preserving reduction from Group Steiner Tree problem to Fixed Cost k-Flow, we obtain the first polylogarithmic lower bound for the problem; this also implies the first non-constant lower bounds for the Capacitated Steiner Network and Capacitated Multicommodity Flow problems. We then consider two special cases of Fixed Cost k-Flow. In the Bipartite Fixed-Cost k-Flow problem, we are given a bipartite graph G = (AB, E) and an integer k > 0. The goal is to find a node subset S ? AB of minimum size |S| such G has k pairwise edge-disjoint paths between SA and SB. We give an \(O(\sqrt {k\log k})\) approximation for this problem. We also show that we can compute a solution of optimum size with Ω(k/polylog(n)) paths, where n = |A| + |B|. In the Generalized-P2P problem we are given an undirected graph G = (V, E) with edge-costs and integer charges {b v : vV}. The goal is to find a minimum-cost spanning subgraph H of G such that every connected component of H has non-negative charge. This problem originated in a practical project for shift design [11]. Besides that, it generalizes many problems such as Steiner Forest, k-Steiner Tree, and Point to Point Connection. We give a logarithmic approximation algorithm for this problem. Finally, we consider a related problem called Connected Rent or Buy Multicommodity Flow and give a log3+?? n approximation scheme for it using Group Steiner Tree techniques.  相似文献   

5.
The distance graph G(n, 2, 1) is a graph where vertices are identified with twoelement subsets of {1, 2,..., n}, and two vertices are connected by an edge whenever the corresponding subsets have exactly one common element. A random subgraph G p (n, 2, 1) in the Erd?os–Rényi model is obtained by selecting each edge of G(n, 2, 1) with probability p independently of other edges. We find a lower bound on the independence number of the random subgraph G1/2(n, 2, 1).  相似文献   

6.
Given a tree T=(V,E) of n nodes such that each node v is associated with a value-weight pair (val v ,w v ), where value val v is a real number and weight w v is a non-negative integer, the density of T is defined as \(\frac{\sum_{v\in V}{\mathit{val}}_{v}}{\sum_{v\in V}w_{v}}\). A subtree of T is a connected subgraph (V′,E′) of T, where V′?V and E′?E. Given two integers w min? and w max?, the weight-constrained maximum-density subtree problem on T is to find a maximum-density subtree T′=(V′,E′) satisfying w min?≤∑vV w v w max?. In this paper, we first present an O(w max? n)-time algorithm to find a weight-constrained maximum-density path in a tree T, and then present an O(w max? 2 n)-time algorithm to find a weight-constrained maximum-density subtree in T. Finally, given a node subset S?V, we also present an O(w max? 2 n)-time algorithm to find a weight-constrained maximum-density subtree in T which covers all the nodes in S.  相似文献   

7.
Tree patterns represent important fragments of XPath. In this paper, we show that some classes \({\mathcal{C}}\) of tree patterns exhibit such a property that, given a finite number of compatible tree patterns \({P_1, \ldots, P_n\in \mathcal{C}}\), there exists another pattern P such that P 1, . . . , P n are all contained in P, and for any tree pattern \({Q\in \mathcal{C}}\), P 1, . . . , P n are all contained in Q if and only if P is contained in Q. We experimentally demonstrate that the pattern P is usually much smaller than P 1, . . . , P n combined together. Using the existence of P above, we show that testing whether a tree pattern, P, is contained in another, \({Q\in \mathcal{C}}\), under an acyclic schema graph G, can be reduced to testing whether P G , a transformed version of P, is contained in Q without any schema graph, provided that the distinguished node of P is not labeled *. We then show that, under G, the maximal contained rewriting (MCR) of a tree pattern Q using a view V can be found by finding the MCR of Q using V G without G, when there are no *-nodes on the distinguished path of V and no *-nodes in Q.  相似文献   

8.
We analyze the necessary existence conditions for (a, d)-distance antimagic labeling of a graph G = (V, E) of order n. We obtain theorems that expand the family of not (a, d) -distance antimagic graphs. In particular, we prove that the crown P n P 1 does not admit an (a, 1)-distance antimagic labeling for n ≥ 2 if a ≥ 2. We determine the values of a at which path P n can be an (a, 1)-distance antimagic graph. Among regular graphs, we investigate the case of a circulant graph.  相似文献   

9.
An outer-connected dominating set in a graph G = (V, E) is a set of vertices D ? V satisfying the condition that, for each vertex v ? D, vertex v is adjacent to some vertex in D and the subgraph induced by V?D is connected. The outer-connected dominating set problem is to find an outer-connected dominating set with the minimum number of vertices which is denoted by \(\tilde {\gamma }_{c}(G)\). In this paper, we determine \(\tilde {\gamma }_{c}(S(n,k))\), \(\tilde {\gamma }_{c}(S^{+}(n,k))\), \(\tilde {\gamma }_{c}(S^{++}(n,k))\), and \(\tilde {\gamma }_{c}(S_{n})\), where S(n, k), S +(n, k), S ++(n, k), and S n are Sierpi\(\acute {\mathrm {n}}\)ski-like graphs.  相似文献   

10.
We consider a class of graphs G(n, r, s) = (V (n, r),E(n, r, s)) defined as follows:
$$V(n,r) = \{ x = ({x_{1,}},{x_2}...{x_n}):{x_i} \in \{ 0,1\} ,{x_{1,}} + {x_2} + ... + {x_n} = r\} ,E(n,r,s) = \{ \{ x,y\} :(x,y) = s\} $$
where (x, y) is the Euclidean scalar product. We study random subgraphs G(G(n, r, s), p) with edges independently chosen from the set E(n, r, s) with probability p each. We find nontrivial lower and upper bounds on the clique number of such graphs.
  相似文献   

11.
The Euler quotient modulo an odd-prime power pr (r > 1) can be uniquely decomposed as a p-adic number of the form \(\frac{{u^{(p - 1)p^{r - 1} } - 1}}{{p^r }} \equiv a_0 (u) + a_1 (u)p + \cdots + a_{r - 1} (u)p^{r - 1} (\bmod p^r ), \gcd (u,p) = 1,\) where 0 ? aj (u) < p for 0 ? j ? r?1 and we set all aj (u) = 0 if gcd(u, p) > 1. We firstly study certain arithmetic properties of the level sequences (aj (u))u?0 over \(\mathbb{F}_p \) via introducing a new quotient. Then we determine the exact values of linear complexity of (aj (u))u?0 and values of k-error linear complexity for binary sequences defined by (aj (u))u?0.  相似文献   

12.
Mutually independent Hamiltonian cycles in dual-cubes   总被引:1,自引:0,他引:1  
The hypercube family Q n is one of the most well-known interconnection networks in parallel computers. With Q n , dual-cube networks, denoted by DC n , was introduced and shown to be a (n+1)-regular, vertex symmetric graph with some fault-tolerant Hamiltonian properties. In addition, DC n ’s are shown to be superior to Q n ’s in many aspects. In this article, we will prove that the n-dimensional dual-cube DC n contains n+1 mutually independent Hamiltonian cycles for n≥2. More specifically, let v i V(DC n ) for 0≤i≤|V(DC n )|?1 and let \(\langle v_{0},v_{1},\ldots ,v_{|V(\mathit{DC}_{n})|-1},v_{0}\rangle\) be a Hamiltonian cycle of DC n . We prove that DC n contains n+1 Hamiltonian cycles of the form \(\langle v_{0},v_{1}^{k},\ldots,v_{|V(\mathit{DC}_{n})|-1}^{k},v_{0}\rangle\) for 0≤kn, in which v i k v i k whenever kk′. The result is optimal since each vertex of DC n has only n+1 neighbors.  相似文献   

13.
Tracking frequent items (also called heavy hitters) is one of the most fundamental queries in real-time data due to its wide applications, such as logistics monitoring, association rule based analysis, etc. Recently, with the growing popularity of Internet of Things (IoT) and pervasive computing, a large amount of real-time data is usually collected from multiple sources in a distributed environment. Unfortunately, data collected from each source is often uncertain due to various factors: imprecise reading, data integration from multiple sources (or versions), transmission errors, etc. In addition, due to network delay and limited by the economic budget associated with large-scale data communication over a distributed network, an essential problem is to track the global frequent items from all distributed uncertain data sites with the minimum communication cost. In this paper, we focus on the problem of tracking distributed probabilistic frequent items (TDPF). Specifically, given k distributed sites S = {S 1, … , S k }, each of which is associated with an uncertain database \(\mathcal {D}_{i}\) of size n i , a centralized server (or called a coordinator) H, a minimum support ratio r, and a probabilistic threshold t, we are required to find a set of items with minimum communication cost, each item X of which satisfies P r(s u p(X) ≥ r × N) > t, where s u p(X) is a random variable to describe the support of X and \(N={\sum }_{i=1}^{k}n_{i}\). In order to reduce the communication cost, we propose a local threshold-based deterministic algorithm and a sketch-based sampling approximate algorithm, respectively. The effectiveness and efficiency of the proposed algorithms are verified with extensive experiments on both real and synthetic uncertain datasets.  相似文献   

14.
In its simplest form, the longest common substring problem is to find a longest substring common to two or multiple strings. Using (generalized) suffix trees, this problem can be solved in linear time and space. A first generalization is the k -common substring problem: Given m strings of total length n, for all k with 2≤km simultaneously find a longest substring common to at least k of the strings. It is known that the k-common substring problem can also be solved in O(n) time (Hui in Proc. 3rd Annual Symposium on Combinatorial Pattern Matching, volume 644 of Lecture Notes in Computer Science, pp. 230–243, Springer, Berlin, 1992). A further generalization is the k -common repeated substring problem: Given m strings T (1),T (2),…,T (m) of total length n and m positive integers x 1,…,x m , for all k with 1≤km simultaneously find a longest string ω for which there are at least k strings \(T^{(i_{1})},T^{(i_{2})},\ldots,T^{(i_{k})}\) (1≤i 1<i 2<???<i k m) such that ω occurs at least \(x_{i_{j}}\) times in \(T^{(i_{j})}\) for each j with 1≤jk. (For x 1=???=x m =1, we have the k-common substring problem.) In this paper, we present the first O(n) time algorithm for the k-common repeated substring problem. Our solution is based on a new linear time algorithm for the k-common substring problem.  相似文献   

15.
We consider a game between a group of n pursuers and one evader moving with the same maximum velocity along the 1-skeleton graph of a regular polyhedron. The goal of the paper is finding, for each regular polyhedron M, a number N(M) with the following properties: if nN(M), the group of pursuers wins, while if n < N(M), the evader wins. Part I of the paper is devoted to the case of polyhedra in ?3; Part II will be devoted to the case of ? d , d ≥ 5; and Part III, to the case of ?4.  相似文献   

16.
The notion of the equivalence of vertex labelings on a given graph is introduced. The equivalence of three bimagic labelings for regular graphs is proved. A particular solution is obtained for the problem of the existence of a 1-vertex bimagic vertex labeling of multipartite graphs, namely, for graphs isomorphic with Kn, n, m. It is proved that the sequence of bi-regular graphs Kn(ij)?=?((Kn???1???M)?+?K1)???(unui)???(unuj) admits 1-vertex bimagic vertex labeling, where ui, uj is any pair of non-adjacent vertices in the graph Kn???1???M, un is a vertex of K1, M is perfect matching of the complete graph Kn???1. It is established that if an r-regular graph G of order n is distance magic, then graph G + G has a 1-vertex bimagic vertex labeling with magic constants (n?+?1)(n?+?r)/2?+?n2 and (n?+?1)(n?+?r)/2?+?nr. Two new types of graphs that do not admit 1-vertex bimagic vertex labelings are defined.  相似文献   

17.
We introduce a construction of a set of code sequences {Cn(m) : n ≥ 1, m ≥ 1} with memory order m and code length N(n). {Cn(m)} is a generalization of polar codes presented by Ar?kan in [1], where the encoder mapping with length N(n) is obtained recursively from the encoder mappings with lengths N(n ? 1) and N(n ? m), and {Cn(m)} coincides with the original polar codes when m = 1. We show that {Cn(m)} achieves the symmetric capacity I(W) of an arbitrary binary-input, discrete-output memoryless channel W for any fixed m. We also obtain an upper bound on the probability of block-decoding error Pe of {Cn(m)} and show that \({P_e} = O({2^{ - {N^\beta }}})\) is achievable for β < 1/[1+m(? ? 1)], where ? ∈ (1, 2] is the largest real root of the polynomial F(m, ρ) = ρm ? ρm ? 1 ? 1. The encoding and decoding complexities of {Cn(m)} decrease with increasing m, which proves the existence of new polar coding schemes that have lower complexity than Ar?kan’s construction.  相似文献   

18.
We obtain the conditions for the emergence of the swarm intelligence effect in an interactive game of restless multi-armed bandit (rMAB). A player competes with multiple agents. Each bandit has a payoff that changes with a probability p c per round. The agents and player choose one of three options: (1) Exploit (a good bandit), (2) Innovate (asocial learning for a good bandit among n I randomly chosen bandits), and (3) Observe (social learning for a good bandit). Each agent has two parameters (c, p obs ) to specify the decision: (i) c, the threshold value for Exploit, and (ii) p obs , the probability for Observe in learning. The parameters (c, p obs ) are uniformly distributed. We determine the optimal strategies for the player using complete knowledge about the rMAB. We show whether or not social or asocial learning is more optimal in the (p c , n I ) space and define the swarm intelligence effect. We conduct a laboratory experiment (67 subjects) and observe the swarm intelligence effect only if (p c , n I ) are chosen so that social learning is far more optimal than asocial learning.  相似文献   

19.
We consider a geographic optimization problem in which we are given a region R, a probability density function f(?) defined on R, and a collection of n utility density functions u i (?) defined on R. Our objective is to divide R into n sub-regions R i so as to “balance” the overall utilities on the regions, which are given by the integrals \(\iint _{R_{i}}f(x)u_{i}(x)\, dA\). Using a simple complementary slackness argument, we show that (depending on what we mean precisely by “balancing” the utility functions) the boundary curves between optimal sub-regions are level curves of either the difference function u i (x) ? u j (x) or the ratio u i (x)/u j (x). This allows us to solve the problem of optimally partitioning the region efficiently by reducing it to a low-dimensional convex optimization problem. This result generalizes, and gives very short and constructive proofs of, several existing results in the literature on equitable partitioning for particular forms of f(?) and u i (?). We next give two economic applications of our results in which we show how to compute a market-clearing price vector in an aggregate demand system or a variation of the classical Fisher exchange market. Finally, we consider a dynamic problem in which the density function f(?) varies over time (simulating population migration or transport of a resource, for example) and derive a set of partial differential equations that describe the evolution of the optimal sub-regions over time. Numerical simulations for both static and dynamic problems confirm that such partitioning problems become tractable when using our methods.  相似文献   

20.
A radial basis function approximation takes the form
$s(x)=\sum_{k=1}^na_k\phi(x-b_k),\quad x\in {\mathbb{R}}^d,$
where the coefficients a 1,…,a n are real numbers, the centres b 1,…,b n are distinct points in ? d , and the function φ:? d →? is radially symmetric. Such functions are highly useful in practice and enjoy many beautiful theoretical properties. In particular, much work has been devoted to the polyharmonic radial basis functions, for which φ is the fundamental solution of some iterate of the Laplacian. In this note, we consider the construction of a rotation-invariant signed (Borel) measure μ for which the convolution ψ=μ φ is a function of compact support, and when φ is polyharmonic. The novelty of this construction is its use of the Paley–Wiener theorem to identify compact support via analysis of the Fourier transform of the new kernel ψ, so providing a new form of kernel engineering.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号