首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
宋寅  严梅荣  鞠兴荣 《食品科技》2012,(2):81-84,88
研究乙酰化和丁二酰化对菜籽蛋白功能性质和抗氧化活性的影响,以及碱性蛋白酶水解对酰化菜籽蛋白功能性质和抗氧化活性的影响。结果表明,乙酰化和丁二酰化能明显提高菜籽蛋白的水溶性、吸油性和乳化性,但对乳化稳定性和起泡性影响不大,泡沫稳定性略有增加;酰化反应还能提高菜籽蛋白对DPPH自由基的清除率;酶水解酰化菜籽蛋白能显著提高水溶性,同时提高乙酰化菜籽蛋白对DPPH自由基的清除率。  相似文献   

2.
探究乳清蛋白在碱性蛋白酶限制性水解下功能性质变化。以乳清蛋白的溶解性,乳化性、乳化稳定性,起泡性、起泡稳定性为考察指标,确定乳清蛋白的等电点及分析不同水解度下乳清蛋白功能性质在p H调控下的变化。结果表明:乳清蛋白的等电点为4.8。乳清蛋白进行限制性酶解后功能性质有了很大提高,其中溶解性在DH14、p H10下达到最大值,较原蛋白提高了14.55%;起泡性在DH14、p H4下达到最大值,较原蛋白提高了107.5%;起泡稳定性在DH4、p H4下达到最大值,比原蛋白提高了8.66%;乳化性在DH14、p H12下达到最大值,比原蛋白提高了56.1%;乳化稳定性DH4、p H12下达到最大值,比原蛋白提高了50.42%。   相似文献   

3.
为了了解高压均质技术对大豆分离蛋白(SPI)功能性质的影响,采用不同的均质压力、均质次数和料液比对大豆分离蛋白溶液进行了高压均质处理,并分析处理前后SPI功能性质的变化.结果表明:高压均质可在一定程度上提高SPI的溶解性、乳化活性及其稳定性和起泡性及泡沫稳定性.均质压力在0~70 MPa的范围内升高时,SPI的溶解性、乳化稳定性、起泡性和泡沫稳定性得到了相应的改善,而乳化活性在压力为40 MPa时达到最高;均质次数由1次向3次增加时,SPI的乳化稳定性、起泡性及泡沫稳定性得到了提高,而溶解性和乳化活性则降低;均质物料料液比在1∶16~1∶8 (g∶mL)的范围内逐步增大时,SPI的各项功能性质均有不同程度的提高,并在料液比为1∶8时达到了最高值.  相似文献   

4.
王娜  吴长玲  陈凡凡  李杨  滕飞 《食品科学》2020,(19):146-153
为探明高压均质处理对大豆分离蛋白(soybean protein isolate,SPI)和大豆异黄酮(soy isoflavone,SI)之间相互作用及其复合物功能性质的影响,并确定最佳处理条件,本实验研究10 mg/mL SPI分别与0、0.2、2 mg/mL SI所形成复合物的结构和功能特性随均质压力条件变化的规律。采用紫外光谱、荧光光谱和傅里叶变换红外光谱(Fourier transform infrared spectrometer,FTIR)分析不同均质条件下复合物构象变化,以粒径、Zeta电位、溶解度和疏水性表征不同均质条件下复合物的流体动力学半径和功能特性。荧光光谱结果表明SI对SPI的荧光猝灭机制为静态猝灭。在压力为80 MPa、SI质量浓度为0.2 mg/mL时,粒径分布稳定,Zeta电位绝对值、溶解度、疏水性均显著提高(P<0.05)。紫外光谱和FTIR结果表明SPI中色氨酸残基附近的微环境亲水性增强,SPI二级结构发生改变。  相似文献   

5.
本文以商业大豆分离蛋白(Soy protein isolate,SPI)为原料,分别通过酶解、均质联合酶解制备了蛋白纳米颗粒(Soy protein nanoparticles,SPNPs),对比分析了SPNPs的粒径、多相分散系数及微观形态、傅里叶红外光谱、内源荧光等结构特征,以及内部作用力、表面疏水性、Zeta电位、两亲特性、乳化性与起泡性等物化特性。研究发现:SPI粒径较大(230.00 nm),低水解度(3%)酶解和均质联合酶解处理制备的SPNPs粒径减小(64.20~144.80 nm),呈小球形。二级结构分析表明均质联合酶解制备SPNPs的α-螺旋/β-折叠比例(约45%)较高。与单一酶解所制SPNPs相比,均质联合酶解制备的SPNPs在中性条件时具有更强负电荷(−33 mV),表面疏水性更高,乳化和起泡性能更强。内部作用力结果表明疏水相互作用主导了纳米颗粒结构的形成,氢键和二硫键分别为维持纳米颗粒外部和内部结构的主要作用力。上述结果表明均质协同酶解处理为绿色制备多功能蛋白纳米颗粒提供了新的解决思路。  相似文献   

6.
高压均质对大豆分离蛋白功能特性的影响   总被引:2,自引:0,他引:2  
研究了高压均质压力(40~160MPa)和均质次数(1次/2次)对大豆分离蛋白(SPI)功能特性的影响。结果表明:均质次数为1次时,40MPa和80MPa可显著提高SPI的溶解性,压力增加至120MPa和160MPa时,溶解性反而明显下降,但持水性提高;1次均质可以显著改善SPI乳化活性,而对其乳化稳定性影响不大;80MPa1次均质和160MPa2次均质能显著提高SPI凝胶性;除160MPa外,均质压力相同时,1次均质比2次均质更有利于改善SPI功能特性(包括溶解性、乳化性、凝胶性和持油性)。  相似文献   

7.
本研究以微晶纤维素为原料,经过超微粉碎预处理后,通过酶解辅助高压均质的方法制备纳米纤维素,研究纳米纤维素的结构和理化性质,并通过扫描电镜、透射电镜、红外光谱、X-射线衍射和热失重分析对纳米纤维素进行表征。结果表明,超微粉碎前处理能使微晶纤维素颗粒大小形状趋于均一化;所制备的纳米纤维素呈束状结构,颗粒直径为1540 nm;纳米纤维素在制备过程中纤维素结构未遭到破坏;纳米纤维素的结晶度为58.1%,仍属于纤维素Ⅰ型;纳米纤维素的起始热分解温度比微晶纤维素的分解温度低,当温度达到500℃时,纳米纤维素的热失重率为82.9%。因此通过酶解辅助高压均质制备的纳米纤维素有望在可降解复合材料中得到应用。   相似文献   

8.
菜籽蛋白功能性质及抗氧化的研究进展   总被引:2,自引:0,他引:2  
菜籽蛋白是一种完全蛋白,其营养价值高,总体品质优于大豆蛋白,甚至与动物蛋白或酪蛋白不相上下。菜籽蛋白不仅具有良好的功能性质如溶解性、乳化性、起泡性和凝胶性等,还具有良好的抗氧化活性,在食品工业和医药领域有很好的应用前景。但国内对于菜籽蛋白功能性质的研究相对较少,多集中在蛋白回收率的提高以及对有毒成分硫苷、植酸、多酚等的脱除。通过综述菜籽蛋白功能性质和抗氧化活性的研究进展,为今后菜籽蛋白的应用研究提供参考。  相似文献   

9.
论文采用高压(200、400和600 MPa)、加热(60、80和100℃)预处理菜籽蛋白,经碱性蛋白酶水解(酶浓度1%、3%、和5%)后,分析不同处理条件对菜籽蛋白水解度、ACE、肾素抑制活性及抗氧化活性的影响。结果表明:高压与热处理会降低菜籽蛋白的水解度。与对照组相比,高压与热处理会增加菜籽蛋白水解物的ACE、肾素抑制活性,其中400 MPa处理菜籽蛋白在5%的酶浓度下ACE抑制率提高10.27%,80℃处理的菜籽蛋白在5%的酶浓度下肾素抑制率提高50.06%;1%酶浓度下的菜籽蛋白经高压或热处理氧自由基吸附能力降低明显;高压或热处理的菜籽蛋白在不同酶浓度下Fe2+螯合能力显著增强(P<0.05)。研究认为,高压和热处理会在一定程度上改善了菜籽蛋白的生物活性。  相似文献   

10.
菜籽清蛋白双酶分步酶解的工艺研究   总被引:1,自引:0,他引:1  
以菜籽清蛋白为原料,利用碱性蛋白酶和未瓜蛋白酶对其进行双酶分步水解.在单因素实验的基础上,采用正交实验对水解条件进行优化.结果表明:在最适底物浓度3.5%条件下,先用4000U/g碱性蛋白酶于pH8.0、55%下水解3h后.再用3000U/g木瓜蛋白酶于pH5.5、50%下水解3h,菜籽清蛋白的水解度达到加.17%,氮溶解指数为90.89%.  相似文献   

11.
大米蛋白质的酶法水解及其性质研究   总被引:17,自引:5,他引:17  
本文通过三种蛋白酶催化反应动力学特性的比较,确定用碱性蛋白酶Alcalase作为水解大米分离蛋白的酶制荆,并通过正交试验分别获得高溶解性、高发泡性、高乳化性大米蛋白水解物的酶反应条件。本实验所得到的大米蛋白水解物最大溶解度为50.2%,最大发泡力为50mL,最大乳化力为73.6mL/g。  相似文献   

12.
采用纤维素酶、果胶酶、Alcalase蛋白酶对油菜籽进行水相酶解法制取油脂和蛋白。对传统水剂法制油及水相酶解法提油工艺所得菜籽蛋白的功能特性进行了对比研究。研究表明:在实验条件下,工艺过程对菜籽蛋白的功能特性有一定的影响,表现为低度改性,所得菜籽蛋白溶解度显著提高,尤其是在菜籽蛋白等电区域。同时具有更好的起泡性、乳化性、持水性、吸油性,但泡沫稳定性和黏度比传统水剂法有所降低。这些功能特性的变化使之更有利于用做食品原料。  相似文献   

13.
以Alcalase蛋白酶在温度50%、pH8.0条件下,对以水剂法从菜籽中提取的含油菜籽蛋白酶解处理,研究表明:含油菜籽蛋白乳液的固形物颗粒度对酶反应速率有明显影响,总的趋势是颗粒度越小,酶促反应速率越大;酶催化水解速率随水解进程呈指数下降,在反应过程中过高的底物浓度会引起酶的抑制失活,在此基础上由实验数据推导出描述催化水解含油菜籽蛋白的动力学方程,由此通过控制酶与底物浓度之比、反应时间,可以控制水解作用的程度,指导和优化酶促反应。  相似文献   

14.
为改善高温菜籽粕蛋白质的功能性质,用碱性蛋白酶对其进行限制性水解,并研究不同水解度(DH)高温菜籽粕蛋白功能性质及相对分子质量分布。结果表明:碱性蛋白酶限制性水解高温菜籽粕蛋白的溶解度、乳化性和吸油性均有所改善,其中溶解度随水解度增加而增加,pH7.0 时DH为10% 的高温菜籽粕蛋白的溶解度达63.82%,是原蛋白溶解度的2.1 倍;DH 为2.0% 的水解蛋白乳化性最好,pH6.0 和pH8.0 时乳化指数分别为0.43 和0.49,比原蛋白乳化指数分别高0.13 和0.11;DH 为8% 的水解蛋白吸油性最好,为4.39g/g。水解后高温菜籽粕蛋白的某些功能性质与其相对分子质量分布有一定的关系,需控制高温菜籽粕蛋白水解度以获得某种良好的功能性质。  相似文献   

15.
采用碱性蛋白酶Alcalase水解菜籽粕并结合pH 8~10的碱液进一步提取,制取弱酸性pH下可溶菜籽蛋白水解物。研究结果表明,菜籽蛋白水解后的灭酶方法将影响蛋白水解物的提取率,使用降低pH灭酶法的提取率大于加热灭酶法。当菜籽蛋白酶解水解度为10%及碱提取的pH为9时,得到的水解物的蛋白提取率为73.4%,该水解物可在弱酸性pH下溶解,经过膜分离等进一步处理除去硫甙等抗营养因子和无机盐后,有望作为碳酸饮料等酸性食品的营养强化剂使用。  相似文献   

16.
复合酶水解菜籽清蛋白的研究   总被引:8,自引:2,他引:8  
以菜籽清蛋白为原料,选择碱性蛋白(Alcalase)和复合风味酶(Flavourzyme)分步水解制备菜籽清蛋白水解物。通过单因素实验和响应面法分析,确定了碱性蛋白酶(Alcalase)酶解菜籽清蛋白的最佳水解条件为:pH8.0、反应温度50.1℃、酶用量0.38AU/g、底物浓度4.87%。在此条件下水解1h,水解度为14.72%。分步酶解的工艺条件为:Alcalase酶反应1h后,加入50LAPU/g Flavourzyme酶,50℃下酶解2h,酶解液水解度可达28%。氨基酸分析结果表明,菜籽清蛋白水解物可作为优质食品添加剂用于食品工业。  相似文献   

17.
朱均旺  鞠兴荣  王立峰  袁建  何荣 《食品科学》2010,31(13):244-248
以反胶束法萃取得到的菜籽粕蛋白液为原料,以酶解产物的水解度、三氯乙酸氮溶解指数和肽得率为评价指标,并参照酶解液肽的分子量分布,考察超声波辅助分步酶解法对原料水解的影响。从木瓜蛋白酶、复合蛋白酶、碱性蛋白酶、复合风味酶、胰蛋白酶组成的6 个复合酶中,筛选出制备优质小分子量菜籽肽的适宜复合酶。结果表明,木瓜蛋白酶与复合风味酶、胰蛋白酶与复合风味酶组成的两种复合酶均比较适合酶解此种菜籽粕蛋白,它们的酶解产物水解度和多肽得率较高,所含小分子量肽也较多。  相似文献   

18.
米渣蛋白酶解及酶解物功能性质研究   总被引:3,自引:0,他引:3  
以米渣为原料,通过实验确定用复合胰蛋白酶进行限制性酶解,用酶量为1%,酶解工艺条件:酶解温度为50℃,固液比为1:5,pH为8,酶解时间3 h;并对蛋白酶解物的溶解性、乳化性及乳化稳定性、粘性、粒度分布等功能性质进行了研究,发现蛋白酶解物的功能性质较原来蛋白质有显著提高。  相似文献   

19.
严梅荣  王丹丹  鞠兴荣 《食品科学》2009,30(13):136-139
采用碱性蛋白酶Alcalase 水解菜籽粕制取菜籽粕蛋白多肽,研究酶解时添加Na2SO3对酶解反应速率和菜籽粕蛋白水解物的功能性质的影响。结果表明添加Na2SO3 时Alcalase 水解菜籽粕蛋白反应120min的水解度为未添加的1.6 倍,但是添加亚硫酸钠的蛋白水解物的乳化性、起泡性和泡沫稳定性均小于未添加的,这可能是因为添加亚硫酸钠的蛋白水解物的水解度高所造成的。超滤和透析能够提高蛋白水解物的吸油性和泡沫稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号