首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper addresses the emulation of linear and nonlinear loads using a vector-controller dynamometer for the position control of mechanical loads. The emulation strategy allows an electrical machine (dynamometer) to be controlled, so as to emulate both the static and dynamic characteristics of a load with a certain bandwidth. The approach can be used for the experimental validation and testing of the electrical drives and motion-control techniques. The dynamic structure of the emulated load is always preserved. High-order systems such as loads with flexible shafts and nonlinear effects can be emulated accurately. This paper presents the dynamometer-control design, its practical implementation, and experimental results for the position control of the linear and nonlinear emulated loads. Systems with stiff and flexible shafts are considered. Finally, the experimental results are compared with the corresponding simulated loads to validate the emulation strategy.  相似文献   

2.
This paper presents a novel control strategy for power smoothing in wind energy applications, especially those feeding a stand-alone load. The system is based on a vector-controlled induction machine driving a flywheel and addresses the problem of regulating the DC-link system voltage against both input power surges/sags from a wind turbine or sudden changes in load demand. The control is based on a feedforward compensation scheme augmented by a nonlinear controller. Two feedforward compensation schemes are discussed and the limitations and performance of each scheme are analyzed. Experimental results are presented which verify the excellent performance of the feedforward compensation technique  相似文献   

3.
This paper presents the analysis and design of a multiple feedback loop control scheme for single-phase voltage-source uninterruptible power supply (UPS) inverters with an L-C filter. The control scheme is based on sensing the current in the capacitor of the load filter and using it in an inner feedback loop. An outer voltage feedback loop is also incorporated to ensure that the load voltage is sinusoidal and well regulated. A general state-space averaged model of the UPS system is first derived and used to establish the steady-steady quiescent point. A linearized small signal dynamic model is then developed from the system general model using perturbation and small-signal approximation. The linearized system model is employed to examine the incremental dynamics of the power circuit and select appropriate feedback variables for stable operation of the closed-loop UPS system. Experimental verification of a laboratory model of the UPS system under the proposed closed-loop operation is provided for both linear and nonlinear loads. It is shown that the control scheme offers improved performance measures over existing schemes, It is simple to implement and capable of producing nearly perfect sinusoidal load voltage waveform at moderate switching frequency and reasonable size of filter parameters. Furthermore, the scheme has excellent dynamic response and high voltage utilization of the DC source  相似文献   

4.
In a vector-controlled induction machine drive, accurate knowledge of the machine electrical parameters is required to ensure correct alignment of the stator current vector relative to the rotor flux vector, to decouple the fluxand torque-producing currents and to tune the current control loops. This paper presents a new method for online identification of the induction machine parameters required to tune a rotor-flux-oriented (RFO) vector control scheme. Accuracy of the slip frequency estimation required for RFO vector control is achieved by utilizing the parameter independent "flux pulse" rotor time constant estimation scheme, which utilizes short-duration pulses injected into the flux-producing current. The parameters required to tune the synchronous frame current control loops with a decoupling circuit are estimated using a recursive estimation scheme derived from the synchronous frame voltage equations. As the "flux pulse" scheme requires signal injection into the flux-producing current a new rotor time constant estimation scheme is presented, based on the sensitivity analysis of the recursive parameter estimation scheme. Simulation and experimental results are presented which demonstrate the effectiveness of the online parameter identification and control loop tuning technique.  相似文献   

5.
Converters operated in discontinuous-conduction-mode (DCM) and in continuous-conduction-mode (CCM) are suitable for lighter and higher loads, respectively. A new, constant switching frequency based single-phase rectifier system is proposed, which operates in DCM and in CCM for outputs less than and greater than 50% rated load, respectively, covering a wide range of load variation. The power circuit and the control circuit of the proposed rectifier are easily configurable for DCM and CCM operations. The measured load current is used to select the desired operating mode. The peak device current under DCM is limited to rated device current under CCM without using a device of higher current rating. The input current shaping under CCM and DCM are based on the comparison of measured input current with linear and nonlinear carriers, respectively. A load current feedforward scheme is presented to improve the system dynamic performance and also to ensure a smooth transition between the two operating modes. All the necessary control operations are performed without using multiplication, division and square-root operation. The proposed rectifier shows improved input current characteristics over the existing CCM converters for the above load range. This is validated on a 600-W rectifier prototype. Simulation and experimental results are presented  相似文献   

6.
The control problem for a series DC motor is considered. Based on a nonlinear mathematical model of a series-connected DC motor, it is shown that the combination of a nonlinear transformation and state feedback (feedback linearization) reduces the nonlinear control design to a linear control design. To demonstrate its effectiveness, an experimental study of this controller is presented. These experimental results are also compared with a simulation of the closed-loop system. Finally, it is shown that a nonlinear observer (with linear error dynamics) for speed and load torque can be constructed based only on measurements of the motor current. Experimental results of this speed and load-torque estimator are also presented  相似文献   

7.
This paper presents a supervisory fuzzy neural network control (SFNNC) method for a three-phase inverter of uninterruptible power supplies (UPSs). The proposed voltage controller is comprised of a fuzzy neural network control (FNNC) term and a supervisory control term. The FNNC term is deliberately employed to estimate the uncertain terms, and the supervisory control term is designed based on the sliding mode technique to stabilise the system dynamic errors. To improve the learning capability, the FNNC term incorporates an online parameter training methodology, using the gradient descent method and Lyapunov stability theory. Besides, a linear load current observer that estimates the load currents is used to exclude the load current sensors. The proposed SFNN controller and the observer are robust to the filter inductance variations, and their stability analyses are described in detail. The experimental results obtained on a prototype UPS test bed with a TMS320F28335 DSP are presented to validate the feasibility of the proposed scheme. Verification results demonstrate that the proposed control strategy can achieve smaller steady-state error and lower total harmonic distortion when subjected to nonlinear or unbalanced loads compared to the conventional sliding mode control method.  相似文献   

8.
This paper is devoted to the design of a sliding-mode control scheme for a buck-based inverter, with programmable amplitude, frequency, and DC offset, with no external sinusoidal reference required. A general procedure for obtaining an autonomous (time independent) switching surface from a time-dependent one is presented. For this surface, the system exhibits a zeroth-order dynamics in sliding motion. On the other hand, from the sliding-domain analysis, a set of design restrictions is established in terms of the inverter output filter Bode diagram and the output signal parameters (amplitude, frequency and DC offset), facilitating the subsequent design procedure. The control scheme is robust with respect to both power-stage parameter variations and external disturbances and can be implemented by means of conventional electronic circuitry. Simulations and experimental results for both reactive and nonlinear loads are presented  相似文献   

9.
Field-oriented-controlled induction motor drives have been widely used over the last several years. Conventional direct stator-flux-oriented control schemes have the disadvantage of poor performance in the low-speed operating area when the stator flux is calculated using the voltage model, due to the stator resistance uncertainties and variations. In this paper, a new closed-loop stator-flux estimation method for a stator-flux-oriented vector-controlled induction motor drive is presented in which the stator resistance value is updated during operation. This method is based on a simple algorithm capable of running in a low-cost microcontroller, which is derived from the dynamic model of the induction machine. The effects of stator resistance detuning, especially in the low-speed operating region, are investigated and simulation results are shown. The motor drive system as well as the control logic and the resistance estimator are simulated and characteristic simulation results are derived. In addition, the proposed control scheme is experimentally implemented and some characteristic experimental results are shown. The simulation as well as the experimental results reveal that the proposed method is able to obtain precise flux and torque control, even for very low operating frequencies  相似文献   

10.
This paper presents a novel control strategy for power smoothing. The system is based on a sensorless vector-controlled induction machine driving a flywheel. The problem of regulating the DC-link voltage against input power surges or sudden changes in load demand is addressed. The induction machine is controlled to operate in a wide speed range by using flux weakening above rated speed. A model reference adaptive system observer is used to obtain the rotational speed in the whole speed range. The observer parameters are adapted during flux weakening in order to obtain close tracking of the flywheel speed. Experimental results for the operation of the induction machine between zero to more than twice base speed are presented and discussed.  相似文献   

11.
This paper presents the implementation of Slotine's approach of sliding mode control for position control of a vector-controlled synchronous reluctance machine. A comparison is undertaken between the performance of a fixed gain controller and two sliding mode controllers for both the regulator and servo cases. Invariant performance is obtained using Slotine's approach of sliding mode control compared to a fixed gain controller. Robustness to parameter variation is an important feature of this technique. This can be achieved through the control law design, assuming parameter variation bounds are known. These improvements are demonstrated for variations in the load inertia. Machine inductance ripple affects the quality of achievable position control. A state-space model for the machine to incorporate this effect yields drive simulation results that agree with presented experimental results  相似文献   

12.
This paper describes a newly designed nonlinear control strategy to control a linear induction motor servo drive for periodic motion. Based on the concept of the nonlinear state feedback theory and optimal technique, a nonlinear control strategy, which is composed of an adaptive optimal control system and a sliding-mode flux observation system, is developed to improve the drawbacks in previous works concerned with complicated intelligent control. The control and estimation methodologies are derived in the sense of Lyapunov theorem so that the stability of the control system can be guaranteed. The sliding-mode flux observation system is implemented using a digital signal processor with a high sampling rate to make it possible to achieve good dynamics. Computer simulations and experimental results have been conducted to validate the effectiveness of the proposed control scheme under the occurrence of possible uncertainties and different reference trajectories. The merits of the proposed control system are indicated in comparison with a traditional optimal control system.  相似文献   

13.
Active power filters (APFs) have been used to compensate harmonics, reactive current, and negative sequence fundamental frequency current drawn by nonlinear loads. The control of APF is the core issue for their proper operation. The flexibility of selective compensation embedded in the control scheme makes APF versatile for compensation of reactive power, harmonic currents, and unbalance in source currents and their combinations, depending upon the limited rating of voltage source inverter employed as APF. The proposed scheme utilizes neural network-based decomposition of the load current into positive and negative sequence fundamental frequency component, reactive component and harmonic components. The adaline-based current decomposer estimates the reference currents through tracking of unit vectors together with tuning of the weights. The implementation of the control scheme facilitates selective compensation which respects the limited rating of the APF. The simulated results using developed MATLAB model are presented and are validated by experimental results to depict the effectiveness of the proposed control method of APF  相似文献   

14.
In this paper, the nonlinear sliding-mode torque and flux control combined with the adaptive backstepping approach for an induction motor drive is proposed. Based on the state-coordinates transformed model representing the torque and flux magnitude dynamics, the nonlinear sliding-mode control is designed to track a linear reference model. Furthermore, the adaptive backstepping control approach is utilized to obtain the robustness for mismatched parameter uncertainties. With the proposed control of torque and flux amplitude, the controlled induction motor drive possesses the advantages of good transient performance and robustness to parametric uncertainties, and the transient dynamics of the induction motor drive can be regulated through the design of a linear reference model which has the desired dynamic behaviors for the drive system. Finally, some experimental results are demonstrated to validate the proposed controllers  相似文献   

15.
This paper proposes a new control scheme based on a two-layer control structure to improve both the transient and steady-state responses of a closed-loop regulated pulse-width-modulated (PWM) inverter for high-quality sinusoidal AC voltage regulation. The proposed two-layer controller consists of a tracking controller and a repetitive controller. Pole assignment with state feedback has been employed in designing the tracking controller for transient response improvement, and a repetitive control scheme was developed in synthesizing the repetitive controller for steady-state response improvement. A design procedure is given for synthesizing the repetitive controller for PWM inverters to minimize periodic errors induced by rectifier-type nonlinear loads. The proposed control scheme has been realized using a single-chip digital signal processor (DSP) TMS320C14 from Texas Instruments. A 2-kVA PWM inverter has been constructed to verify the proposed control scheme. Total harmonic distortion (THD) below 1.4% for a 60-Hz output voltage under a bridge-rectifier RC load with a current crest factor of 3 has been obtained. Simulation and experimental results show that the DSP-based fully digital-controlled PWM inverter can achieve both good dynamic response and low harmonics distortion  相似文献   

16.
Generally, a speed servo system of a vector-controlled induction motor has limitations of motor voltage and current. When the speed servo system has a large torque reference, the output of its PI controller is often saturated. In this case, the conventional servo system stops the integral calculation of its PI controller. However, this system often has a large overshoot and/or an oscillated response caused by both a windup phenomenon and phase error on the vector control condition. This paper proposes a new speed servo system considering voltage saturation for the vector-controlled induction motor. The proposed control method compensates the phase error on vector control condition quickly, and always keeps the vector control condition. The experimental results show that the proposed system well regulates the motor speed and the secondary magnetic flux for a large torque reference without a windup phenomenon.  相似文献   

17.
This paper describes an effective online method for identifying both stator and rotor resistances, which is useful in robust speed control of induction motors without rotational transducers. The identification method for stator resistance is derived from the steady-state equations of induction motor dynamics. On the other hand, the identification method for rotor resistance is based on the linearly perturbed equations of induction motor dynamics about the operating point. The identification method for both stator and rotor resistances uses only the information of stator currents and voltages. It can provide fairly good identification accuracy regardless of load conditions and be easily incorporated into any sensorless speed controller proposed in the prior literature. Some experimental results are presented to demonstrate the practical use of the identification method. A sensorless speed control system has been built for experimental work, in which all algorithms for identification and control are implemented on a digital signal processor. The experimental results confirm that the proposed method allows for high-precision speed control of commercially available induction motors without rotational transducers  相似文献   

18.
This paper addresses the application of an intelligent optimal control system (IOCS) to control an indirect field-oriented induction servo motor drive for tracking periodic commands via a wavelet neural network. With the field orientation mechanism, the dynamic behavior of an induction motor is rather similar to a linear system. However, the uncertainties, such as mechanical parametric variation, external load disturbance and unmodeled dynamics in practical applications, influence the designed control performance seriously. Therefore, an IOCS is proposed to confront these uncertainties existing in the control of the induction servo motor drive. The control laws for the IOCS are derived in the sense of the optimal control technique and Lyapunov stability theorem, so that system-tracking stability can be guaranteed in the closed-loop system. With the proposed IOCS, the controlled induction servo motor drive possesses the advantages of good tracking control performance and robustness to uncertainties under wide operating ranges. The effectiveness of the proposed control scheme is verified by both simulated and experimental results. Moreover, the advantages of the proposed control system are indicated in comparison with the sliding-mode control system.  相似文献   

19.
The need for linear dummy loads is established. It is indicated that nonlinear dummy loads generate predominantly oddorder harmnonics. A theoretical analysis is presented which demonstrates that an ?infinite? coaxial cable with an infinite load (open circuit)at the output has an input impedance equivalent to the cable's characteristic impedance Z0. An equation is derived relating the voltage standing-wave ratio S, cable length h, and the cable attenuation constant ?. The linearity of a cable load is compared with the linearity of ?typical? commercially available loads and the commercial loads tested are found to generate 20 to 80 dB more third harmonic. Cable selection guidelines for a linear coaxial cable load are presented.  相似文献   

20.
This paper is concerned with the development of a current-fed-type inverter suitable for induction heating and melting applications in the medium-frequency (1-5 kHz) range. The control circuitry, load power factor control, thyristor turn-off control, and protection techniques are discussed. A simple and reliable starting scheme has been developed which provides reliable start-up with all practical loads. The starting circuit has a main and an auxilliary part. The necessity of one or both of these starting circuits is discussed. Experimental results from a prototype unit are presented. The performance of the equipment has been found quite satisfactory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号