首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The speed of sound was measured in gaseous nitrogen trifluoride, ethylene oxide, and trimethyl gallium using a highly precise acoustic resonance technique. The measurements span the temperature range 200 to 425 K and reach pressures up to the lesser of 1500 kPa or 80% of the sample vapor pressure. The speed-of-sound measurements have a relative standard uncertainty of less than 0.01%. The data were analyzed to obtain the constant-pressure ideal-gas heat capacity C 0 p as a function of temperature with a relative standard uncertainty of 0.1%. The values of C 0 p are in agreement with those determined from spectro- scopic data. The speed-of-sound data were fitted by virial equations of state to obtain temperature-dependent density virial coefficients. Two virial coefficient models were employed, one based on square-well intermolecular potentials, and the second based on a hard-core Lennard-Jones intermolecular potential. The resulting virial equations reproduced the sound-speed data to within ±0.02%, and may be used to calculate vapor densities with relative standard uncertainties of 0.1% or less.  相似文献   

2.
The speed of sound was measured in gaseous WF6 using a highly precise acoustic resonance technique. The data span the temperature range from 290 to 420 K and the pressure range from 50 kPa to the lesser of 300 kPa or 80% of the sample's vapor pressure. At 360 K and higher temperatures, the data were corrected for a slow chemical reaction of the WF6 within the apparatus. The speed-of-sound data have a relative standard uncertainty of 0.005%. The data were analyzed to obtain the ideal-gas heat capacity as a function of the temperature with a relative standard uncertainty of 0.1%. These heat capacities are in reasonable agreement with those determined from spectroscopic data. The speed-of-sound data were fitted by virial equations of state to obtain the temperature dependent density virial coefficients. Two virial coefficient models were employed, one based on square-well intermolecular potentials and the second based on a hard-core Lennard–Jones intermolecular potential. The resulting virial equations reproduced the sound-speed data to within ±0.005% and may be used to calculate vapor densities with relative standard uncertainties of 0.1% or less. The hard-core Lennard–Jones potential was used to estimate the viscosity and the thermal conductivity of dilute WF6. The predicted viscosities agree with published data to within 5% and can be extrapolated reliably to higher temperatures.  相似文献   

3.
The speed of sound in gaseous hydrogen bromide (HBr) and boron trichloride (BCl3) was measured using a highly precise acoustic resonance technique. The HBr speed-of-sound measurements span the temperature range 230 to 440 K and the pressure range from 0.05 to 1.5 MPa. The BCl3 speed-of-sound measurements span the temperature range 290 to 460 K and the pressure range from 0.05 MPa to 0.40 MPa. The pressure range in each fluid was limited to 80% of the sample vapor pressure at each temperature. The speed-of-sound data have a relative standard uncertainty of 0.01%. The data were analyzed to obtain the ideal-gas heat capacities as a function of temperature with a relative standard uncertainty of 0.1%. The heat capacities agree with those calculated from spectroscopic data within their combined uncertainties. The speeds of sound were fitted with the virial equation of state to obtain the temperature-dependent density virial coefficients. Two virial coefficient models were employed, one based on the hard-core square-well intermolecular potential model and the second based on the hard-core Lennard–Jones intermolecular potential model. The resulting virial equations of state reproduced the speed-of-sound measurements to 0.01% and can be expected to calculate vapor densities with a relative standard uncertainty of 0.1%. Transport properties calculated from the hard-core Lennard–Jones potential model should have a relative standard uncertainty of 10% or less.  相似文献   

4.
The speed of sound was measured in gaseous nitrous oxide (N2O) and nitric oxide (NO) using an acoustic resonance technique with a relative standard uncertainty of less than 0.01%. The measurements span the temperature range 200 to 460 K at pressures up to the lesser of 1.6 MPa or 80% of the vapor pressure. The data were analyzed to obtain the constant-pressure ideal-gas heat capacity p 0 as a function of temperature with a relative standard uncertainty of 0.1%. For N2O, the values of p 0 agree within 0.1% with those determined from spectroscopic data. For NO, the values of p 0 differ from spectroscopic results by as much as 1.5%, which is slightly more than the combined uncertainties. The speed-of-sound data were fitted by virial equations of state to obtain temperature-dependent density virial coefficients. Two virial coefficient models were employed, one based on square-well intermolecular potentials, and the second based on a hard-core Lennard-Jones intermolecular potential. The resulting virial equations reproduced nearly all the sound-speed data to within ±0.01% and may be used to calculate vapor densities with relative standard uncertainties of 0.1% or less.  相似文献   

5.
A cylindrical resonator was employed to measure the sound speeds in gaseous CF4 and C2F6. The CF4 measurements span the temperature range 300 to 475 K, while the C2F6 measurements range from 210 to 475 K. For both gases, the pressure range was 0.1 MPa to the lesser of 1.5 MPa or 80% of the sample’s vapor pressure. Typically, the speeds of sound have a relative uncertainty of less than 0.01 % and the ideal-gas heat capacities derived from them have a relative uncertainty of less than 0.1%. The heat capacities agree with those determined from spectroscopic data. The sound speeds were fitted with the virial equation of state to obtain the temperature-dependent density virial coefficients. Two models for the virial coefficients were employed, one based on square-well potentials and the second based on a Kihara spherical-core potential. The resulting virial equations reproduce the sound-speed measurements to within 0.005 % and yield densities with relative uncertainties of 0.1% or less. The viscosity calculated from the Kihara potential is 2 to 11% less than the measured viscosity.  相似文献   

6.
The isobaric ideal-gas heat capacity for HFO-1234yf, which is expected to be one of the best alternative refrigerants for HFC-134a, was determined on the basis of speed-of-sound measurements in the gaseous phase. The speed of sound was measured by means of the acoustic resonance method using a spherical cavity. The resonance frequency in the spherical cavity containing the sample gas was measured to determine the speed of sound. After correcting for some effects such as the thermal boundary layer and deformation of the cavity on the resonance frequency, the speed of sound was obtained with a relative uncertainty of 0.01 %. Using the measured speed-of-sound data, the acoustic-virial equation was formulated and the isobaric ideal-gas heat capacity was determined with a relative uncertainty of 0.1 %. A temperature correlation function of the isobaric ideal-gas heat capacity for HFO-1234yf was also developed.  相似文献   

7.
A fundamental equation of state for pentafluoroethane was established on the basis of not only assessment of the experimental data but also by introducing parameters for virial coefficients having a theoretical background in statistical thermodynamics. The equation of state has a range of validity for temperatures from the triple point up to 500 K and pressures up to 70 MPa. The estimated uncertainties of the equation are 0.1% for the vapor pressure, 0.15% in density for the saturated-liquid phase, 0.5% in density for the saturated-vapor phase, 0.1% in density for the liquid phase, 0.1% in pressure for the gaseous phase, 0.5% in density for the supercritical region, 0.01% in speed of sound for the gaseous phase, 0.9% in speed of sound for the liquid phase, 0.5% in isobaric specific heat for the liquid phase, and 1.2% in isochoric specific heat for the liquid phase. The derived specific heats in the gaseous phase are close to the values from the virial equation of state with the second and third virial coefficients derived from intermolecular potential models and precise speed-of-sound measurements.  相似文献   

8.
The second virial coefficients, B, for difluoromethane (R-32, CH2F2) and pentafluoroethane (R-125, CF3CHF2) are derived from speed-of-sound data measured at temperatures from 273 to 343 K with an experimental uncertainty of ±0.0072%. Equations for the second virial coefficients were established, which are valid in the extensive temperature ranges from 200 to 400 K and from 240 to 440 K for R-32 and R-125, respectively. The equations were compared with theoretically derived second virial coefficient values by Yokozeki. A truncated virial equation of state was developed using the determined equation for the virial coefficients. The virial equation of state represents our speed-of-sound data and most of the vapor PT data measured by deVries and Tillner-Roth within ±0.01 and ±0.1%, respectively.  相似文献   

9.
A virial equation of state is presented for vapor-phase pentafluoro-dimethyl ether (CF3−O−CF2H), a candidate alternative refrigerant known as E125. The equation of state was determined from density measurements performed with a Burnett apparatus and from speed-of-sound measurements performed with an acoustical resonator. The speed-of-sound measurements spanned the ranges 260≤T≤400 K and 0.05≤P≤1.0 MPa. The Burnett measurements covered the ranges 283≤T≤373 K and 0.25≤P≤5.0 MPa. The speed-of-sound and Burnett measurements were first analyzed separately to produce two independent virial equations of state. The equation of state from the acoustical measurements reproduced the experimental sound speeds with a fractional RMS deviation of 0.0013%. The equation of state from the Burnett measurements reproduced the experimental pressures with a fractional RMS deviation of 0.012%. Finally, an equation of state was fit to both the speed-of-sound and the Burnett measurements simultaneously. The resulting equation of state reproduced the measured sound speeds with a fractional RMS deviation of 0.0018% and the measured Burnett densities with a fractional RMS deviation of 0.019%.  相似文献   

10.
This work presents measurements of the speed-of-sound in the vapor phase of 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea). The measurements were obtained in a stainless-steel spherical resonator with a volume of 900 cm3 at temperatures between 260 and 380 K and at pressures up to 500 kPa. Ideal-gas heat capacities and acoustic virial coefficients are directly produced from the data. A Helmholtz equation of state of high accuracy is proposed, whose parameters are directly obtained from speed-of-sound data fitting. The ideal-gas heat capacity data are fit by a functions and used when fitting the Helmholtz equation for the vapor phase. From this equation of state other thermodynamic state function are derived. Due to the high accuracy of the equation, only very precise experimental data are suitable for the model validation and only density measurements have these requirements. A very high accuracy is reached in density prediction, showing the obtained Helmholtz equation to be very reliable. The deduced vapor densities are furthermore compared with those obtained from acoustic virial coefficients with the temperature dependences calculated from hard-core square-well potentials.  相似文献   

11.
The density (300–363 K, up to 3.5 MPa) and speed of sound (293–373 K, 7.5–480 kPa) in gaseous R-404a have been studied by an isochoric piezometer method and an ultrasonic interferometer, respectively. The pressures of the saturated vapor along the dew line were measured from 298 to 330 K. The experimental uncertainties of the temperature, pressure, density, and speed-of-sound measurements were estimated to be within ±20 mK, ±1.5 kPa, ±0.15%, and ±(0.1–0.2)%, respectively. On the basis of the obtained data, the isobaric molar heat capacity of R-404a was calculated for the ideal-gas state. An eight-coefficient Benedict–Webb–Rubin equation of state has been developed for the gaseous phase of R-404a.  相似文献   

12.
The viscosity and speed of sound of gaseous nitrous oxide and nitrogen trifluoride were measured using a Greenspan acoustic viscometer. The data span the temperature range 225–375 K and extend up to 3.4 MPa. The average relative uncertainty of the viscosity is 0.68% for N2O and 1.02% for NF3. The largest relative uncertainties were 3.09 and 1.08%, respectively. These occurred at the highest densities (1702 mol · m-3 for N2O and 2770 mol · m-3 for NF3). The major contributor to these uncertainties was the uncertainty of the thermal conductivity. The speeds of sound measured up to 3.4 MPa are fitted by a virial equation of state that predicts gas densities within the uncertainties of the equations of states available in the literature. Accurate measurements of the speed of sound in both N2O and NF3 have been previously reported up to 1.5 MPa. The current measurements agree with these values with maximum relative standard deviations of 0.025% for N2O and 0.04% for NF3.  相似文献   

13.
A new fundamental thermodynamic equation of state for difluoromethane was developed by considering the intermolecular potential behavior for improving the reliability in the gaseous phase. Reliable second and third virial coefficients are introduced in accordance with the principle of a unified relation of the intermolecular potential energy and the fundamental equation of state. The fundamental equation of state is able to provide reliable thermodynamic properties even at low temperatures or in the region near saturation where precise and accurate experimental data are not available. The estimated uncertainties of calculated properties from the equation of state are 0.07% in density for the liquid phase, 0.1% in pressure for the gaseous phase, 0.35% in pressure for the supercritical region, 0.07% in vapor pressure, 0.2% in saturated-liquid density, 0.7% in saturated-vapor density, 0.01% in speed of sound for the gaseous phase, 0.7% in speed of sound for the liquid phase, and 0.6% in isochoric specific heat for the liquid phase. The equation is valid for temperatures from the triple point to 450 K and pressures up to 72 MPa.  相似文献   

14.
The virial equation of state was determined for helium, xenon, and helium-xenon mixtures for the pressure and temperature ranges 0.5 to 5 MPa and 210 to 400 K. Two independent experimental techniques were employed: BurnettPρT measurements and speed-of-sound measurements. The temperature-dependent second and third density virial coefficients for pure xenon and the second and third interaction density virial coefficients for helium-xenon mixtures were determined. The present density virial equations of state for xenon and helium-xenon mixtures reproduce the speed-of-sound data within 0.01% and thePρT data within 0.02% of the pressures. All the results for helium are consistent, within experimental errors, with recent ab initio calculations, confirming the accuracy of the experimental techniques.  相似文献   

15.
New fundamental equations of state explicit in the Helmholtz energy with a common functional form are presented for 2,3,3,3-tetrafluoropropene (R-1234yf) and trans-1,3,3,3-tetrafluoropropene (R-1234ze(E)). The independent variables of the equations of state are the temperature and density. The equations of state are based on reliable experimental data for the vapor pressure, density, heat capacities, and speed of sound. The equation for R-1234yf covers temperatures between 240 K and 400 K for pressures up to 40 MPa with uncertainties of 0.1 % in liquid density, 0.3 % in vapor density, 2 % in liquid heat capacities, 0.05 % in the vapor-phase speed of sound, and 0.1 % in vapor pressure. The equation for R-1234ze(E) is valid for temperatures from 240 K to 420 K and for pressures up to 15 MPa with uncertainties of 0.1 % in liquid density, 0.2 % in vapor density, 3 % in liquid heat capacities, 0.05 % in the vapor-phase speed of sound, and 0.1 % in vapor pressure. Both equations exhibit reasonable behavior in extrapolated regions outside the range of the experimental data.  相似文献   

16.
Thermodynamic Properties of 1,1,1,2,3,3,3-Heptafluoropropane   总被引:1,自引:0,他引:1  
A vapor pressure equation has been developed for 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea) based on previous measurements from 202 to 375K, from which the boiling point of HFC-227ea was determined. Based on the previous pressure–volume–temperature (PVT) measurements in the gaseous phase for HFC-227ea, virial coefficients, saturated vapor densities, and the enthalpy of vaporization for HFC-227ea were also determined. The vapor pressure equation and the virial equation of state for HFC-227ea were compared with the available data. Based on the previous measurements of speed of sound in the gaseous phase for HFC-227ea, the ideal-gas heat capacity at constant pressure and the second acoustic virial coefficient of HFC-227ea were calculated. A correlation of the second virial coefficient for HFC-227ea was obtained by a semiempirical method using the square-well potential for the intermolecular force and was compared with results based on PVT measurements. A van der Waals-type surface tension correlation for HFC-227ea was proposed, based on our previous experimental data by the differential capillary rise method from 243 to 340K.  相似文献   

17.
The density of gaseous and liquid 1,1,1,2,3,3-hexafluoropropane (HFC-236ea) and the speed of sound in liquid HFC-236ea have been studied by a γ-attenuation technique, an ultrasonic interferometer, and an isochoric piezometer method over the temperature range of 263–423 K at pressures up to 4.05 MPa. The purity of the samples used throughout the measurements is 99.68 mol%. The pressures of the saturated vapor were measured over the same temperature range. The experimental uncertainties of the temperature, pressure, density, and speed-of-sound measurements were estimated to be within ±20 mK, ±1.5 kPa, ±(0.05–0.30)%, and ±(0.05–0.10)%, respectively.  相似文献   

18.
A new thermodynamic property model for the Helmholtz free energy with rational third virial coefficients for fluid-phase 1,1-difluoroethane (R-152a) was developed. The model was validated by existing experimental data for temperatures from the triple point to 450 K and pressures up to 60 MPa. Reasonable behavior of the second and third virial coefficients was confirmed from intermolecular potential models. The estimated uncertainties are 0.1% in density for the gaseous and liquid phases, 0.4% in density for the supercritical region, 0.05% in speed of sound for the gaseous phase, 2% in speed of sound for the liquid phase, and 1% in specific heat capacities for the liquid phase. From the reasonable behavior of the ideal curves and the third virial coefficients, the model can be assumed reliable in representing the thermodynamic properties not only at states with available experimental data but also at states for which no experimental data are available.  相似文献   

19.
Measurements of the speed of sound in seven halogenated hydrocarbons are presented. The compounds in this study are 1-chloro-1,2,2,2-tetrafluoroethane (CHClFCF3 or HCFC-124), pentafluoroethane (CHF2 CF3 or HFC-125), 1,1,1-trifluoroethane (CF3CH3 or HFC-143a), 1,1-difluoroethane (CHF2CH3 or HFC-152a), 1,1,1,2,3,3-hexafluoropropane (CF3CHFCHF2 or HFC-236ea), 1,1,1,3,3,3-hexafluoropropane (CF3CH2CF3 or HFC-236fa), and 1,1,2,2,3-pentafluoropropane (CHF2CF2CH2F or HFC-245ca). The measurements were performed with a cylindrical resonator at temperatures between 240 and 400 K and at pressures up to 1.0 MPa. Ideal-gas heat capacities and acoustic virial coefficients were directly deduced from the data. The ideal-gas heat capacity of HFC-125 from this work differs from spectroscopic calculations by less than 0.2% over the measurement range. The coefficients for virial equations of state were obtained from the acoustic data and hard-core square-well intermolecular potentials. Gas densities that were calculated from the virial equations of state for HCFC-124 and HFC-125 differ from independent density measurements by at most 0.15%, for the ranges of temperature and pressure over which both acoustic and Burnett data exist. The uncertainties in the derived properties for the other five compounds are comparable to those for HCFC-124 and HFC-125.  相似文献   

20.
An equation of state for the calculation of the thermodynamic properties of the hydrofluoroolefin refrigerant R-1234ze(E) is presented. The equation of state (EOS) is expressed in terms of the Helmholtz energy as a function of temperature and density. The formulation can be used for the calculation of all thermodynamic properties through the use of derivatives of the Helmholtz energy. Comparisons to experimental data are given to establish the uncertainty of the EOS. The equation of state is valid from the triple point (169 K) to 420 K, with pressures to 100 MPa. The uncertainty in density in the liquid and vapor phases is 0.1 % from 200 K to 420 K at all pressures. The uncertainty increases outside of this temperature region and in the critical region. In the gaseous phase, speeds of sound can be calculated with an uncertainty of 0.05 %. In the liquid phase, the uncertainty in speed of sound increases to 0.1 %. The estimated uncertainty for liquid heat capacities is 5 %. The uncertainty in vapor pressure is 0.1 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号