首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
将38CrMoAl钢加热至1000~1200 ℃ 的奥氏体化温度,保温时间为0~300 s,研究了奥氏体化温度和保温时间对奥氏体晶粒长大行为的影响。试验结果表明,试验钢奥氏体平均晶粒尺寸随奥氏体化温度升高而增大,且晶粒长大速率随着温度的升高而增大。在同一奥氏体化温度下,奥氏体平均晶粒尺寸随保温时间的增加逐渐增大,且晶粒长大速率随时间的延长逐渐减小。根据试验钢奥氏体晶粒尺寸试验数据,建立了38CrMoAl钢奥氏体晶粒尺寸与奥氏体化温度和保温时间关系的Sellars模型,并验证了模型的准确性。  相似文献   

2.
The dynamic recrystallization (DRX) behavior of LZ50 steel was investigated using hot compression tests at a deformation temperature of 870-1170 °C and a strain rate of 0.05-3 s?1. The effects of deformation temperature, strain, strain rate, and initial austenite grain size on the microstructural evolution during DRX were studied in detail. The austenite grain size of DRX was refined with increasing strain rate and decreasing temperature, whereas the initial grain size had no influence on DRX grain size. A model based on the Avrami equation was proposed to estimate the kinetics of the DRX under different deformation conditions. A DRX map, which was derived from the DRX kinetics, the recrystallized microstructure, and the flow stress analysis, can be used to identify optimal deformation conditions. The initiation of DRX was lower than Z c (critical Zener-Hollomon parameter) and higher than εc (critical strain). The relationship between the DRX microstructure and the Z parameter was analyzed. Fine DRX grain sizes can be achieved with a moderate Z value, which can be used to identify suitable deformation parameters.  相似文献   

3.
利用箱式电阻炉对SA508-3钢进行了不同条件下的加热保温实验,分别讨论了加热温度及保温时间对奥氏体晶粒长大的影响。实验结果表明:MC型化合物的溶解温度大约处于1050~1100℃之间。当保温时间恒定,温度低于1050℃时,晶粒生长缓慢,随温度的升高,生长速率增大。保温温度恒定时,在保温初期晶粒急剧长大,随保温时间的延长,晶粒长大趋势趋于平缓。在此基础上,建立了SA508-3钢奥氏体晶粒长大数学模型。  相似文献   

4.
运用光学显微镜、扫描电镜、能谱分析手段系统研究了加热温度、保温时间及合金成分对20Si Mn3Ni A钢原始奥氏体晶粒尺寸的影响。结果表明,随加热温度升高,原始奥氏体晶粒尺寸逐渐增大,奥氏体晶粒长大速率与该温度下的保温时间大致呈抛物线变化;较高含量的Mn提高了Ti、V的碳氮化物的固溶度积,使得该钢在加热温度大于990℃时,晶粒明显长大,高温加热时不具有抗晶粒粗化能力。综合考虑晶粒大小和第二相颗粒(主要是碳氮化物)的影响,并通过测试淬火+回火后的力学性能,确定20Si Mn3Ni A钢合适的奥氏体化温度约为900℃。  相似文献   

5.
为探究加热温度和保温时间对500 MPa级门架型钢奥氏体晶粒尺寸的影响,以两种不同成分试验钢为研究对象,采用了SK型管式加热炉分别将试验钢加热到1000~1200 ℃下保温15、30 min,快速冷却后对组织进行观察。结果表明,奥氏体晶粒尺寸随着加热温度的升高和保温时间的延长而长大,Cr元素的添加对奥氏体晶粒的长大具有一定的抑制作用,研究结果对制定大生产加热具有实际指导作用。  相似文献   

6.
研究了锻造加热温度(1050~1200 ℃)和锻造保温时间(40~120 min)对20Cr2Ni4A钢经相同锻造变形后锻后奥氏体晶粒长大行为的影响,并对不同锻造加热温度下的淬火态20Cr2Ni4A钢进行了力学性能检测。结果表明,锻后20Cr2Ni4A钢奥氏体晶粒长大规律在低于1150 ℃仍然符合Beck模型,模型计算值与实际测量值相吻合。随着锻造加热温度的升高,奥氏体晶粒长大呈现先缓慢增加后快速增加的规律。当锻造加热温度超过1150 ℃时,第二相粒子大量溶解,对晶界的钉扎作用急剧减弱。综合考虑20Cr2Ni4A钢锻后奥氏体晶粒尺寸均匀性、热处理后力学性能测试结果及可锻性因素,确定最优锻造加热温度为1150 ℃。  相似文献   

7.
H13E钢是通过调整合金元素对H13钢进行了一定的改性,研究了淬火工艺对H13E钢显微组织及力学性能的影响。结果表明:随着淬火温度的升高,奥氏体晶粒尺寸单调增加,从1020 ℃升高至1080 ℃时,平均奥氏体晶粒尺寸增长了约40 μm;硬度在1060 ℃达到最大值,为61.6 HRC,相较于传统H13钢硬度高3~5 HRC,同时冲击吸收能量可达16 J以上。当保温时间在20~50 min时,奥氏体晶粒增长速率较缓慢,平均奥氏体晶粒尺寸仅增长7 μm左右,同时硬度仅下降0.2 HRC左右。相同条件下油冷后H13E钢马氏体更细小,力学性能优于空冷后的H13E钢。考虑综合力学性能,H13E钢较佳淬火工艺为:1060 ℃保温20~30 min,油冷。  相似文献   

8.
利用DIL-805AD/T动态膨胀相变仪对S34MnV钢在不同加热温度和保温时间下进行奥氏体化试验,通过晶界腐蚀、光学显微镜观察和截点法测定了奥氏体平均晶粒尺寸,并对S34MnV钢奥氏体晶粒长大规律进行了深入分析。通过对比Beck模型、Hillert模型和Sellars模型,根据实测晶粒尺寸数据拟合并优化了模型参数,建立了S34MnV钢奥氏体晶粒长大的动力学模型。结果表明:兼顾加热温度和保温时间两方面影响因素的Sellars模型的计算结果与实测数据吻合较好,可用于预测S34MnV钢在880~920 ℃加热温度范围内,保温10~240 min时的奥氏体晶粒长大规律。  相似文献   

9.
利用光学显微镜(OM),研究了淬火工艺及Nb元素对30MnB5钢的原奥氏体晶粒度的影响。结果表明:含Nb的30MnB5钢在淬火温度860~920 ℃,保温时间不超过60 min时,原奥氏体晶粒度具有良好的稳定性;当淬火温度达到950 ℃时,保温时间超过30 min后,原奥氏体晶粒尺寸随着保温时间增长逐渐变大;因此,淬火温度低于950 ℃时,Nb元素对30MnB5钢热处理过程中原奥氏体晶粒生长具有抑制作用;当淬火温度达到1000 ℃时,Nb元素仅在30 min以内对原奥氏体晶粒生长有轻微抑制作用,当淬火保温时间超过60 min时,Nb元素完全失去对原奥氏体晶粒生长的抑制作用。  相似文献   

10.
GCr15钢奥氏体晶粒长大规律研究   总被引:5,自引:0,他引:5  
利用Gleeble-3800型热模拟试验机研究不同加热温度和保温时间下GCr15钢的奥氏体晶粒长大规律.结果表明,奥氏体晶粒随加热温度的升高呈指数关系长大,随保温时间的延长近似呈抛物线关系长大,同时晶粒平均直径与保温时间的关系符合Beck方程,温度越高,晶粒生长指数越大.在已有模型的基础上.通过对试验数据进行非线性回归得到了描述GCr15钢奥氏体晶粒长大规律的数学模型.  相似文献   

11.
研究了不同加热工艺参数下(加热温度1050~1300 ℃,保温时间0.25~24 h)12%Cr超超临界转子钢的奥氏体晶粒长大行为,并通过光学显微镜(OM)观察晶粒尺寸的变化规律,建立晶粒长大数学模型。结果表明:随着加热温度增加,晶粒尺寸逐渐增加,加热温度低于1150 ℃时,晶粒尺寸增加明显,而温度高于1150 ℃后,晶粒尺寸逐渐趋于稳定;随着保温时间的增加,晶粒尺寸逐渐增加,保温时间增加到3 h后,晶粒尺寸增加趋势放缓。采用非线性回归方法和Arrhenius晶粒长大模型,建立了该钢的晶粒长大数学模型。  相似文献   

12.
对比研究了含Nb和不含Nb的18CrNiMo7-6试验钢在加热温度(900~1100 ℃)和保温时间(1~8 h)下的奥氏体晶粒长大行为,建立了两种试验钢的奥氏体晶粒长大的数学模型。结果表明,随着加热温度的升高和保温时间的延长,试验钢的奥氏体晶粒逐渐长大,相同加热条件下18CrNiMo7-6-Nb钢的奥氏体晶粒尺寸要小于18CrNiMo7-6钢。将试验钢的晶粒长大过程分为抑制长大阶段(900~1000 ℃)和自由长大阶段(1000~1100 ℃),分别建立了适用于含Nb和不含Nb的两种18CrNiMo7-6试验钢的晶粒长大数学模型。  相似文献   

13.
对某水电用800 MPa调质贝氏体高强钢进行了热变形-热处理晶粒长大的实验室联合试验。采用Gleeble-3500热力模拟试验机对钢试样进行不同工艺热压缩变形后冷却至室温,随后对试样进行模拟淬火再加热,在900~1200℃不同温度和保温时间条件下奥氏体化,研究热变形组织的差异对重新奥氏体化晶粒长大的影响规律。结果表明,不同应变速率(0.01~10 s-1)、变形温度(900~1150℃)和60%工程应变下,试验钢获得的变形组织大致可分为3类:带有明显变形特征的组织、均匀细小的完全再结晶组织和已长大粗化的再结晶组织。3类组织再加热过程中其晶粒长大趋势基本相同,起始晶粒尺寸越大则最终奥氏体晶粒尺寸越大;但在950℃等温时,带有明显变形特征组织的变形试样奥氏体晶粒先缓慢长大后又迅速长大粗化。经评估验证,所建立的Sellars模型、Beck模型和Hillert模型晶粒长大动力学方程对于试验钢的奥氏体晶粒长大行为均有比较满意的预测效果。3类变形组织对应的Hillert模型及Sellars模型中奥氏体长大激活能基本相同,说明同一成分钢种的初始组织的差异并未显著影响晶粒长大机制...  相似文献   

14.
The growth behavior of austenite grains in GCr15 steel was investigated through the isothermal annealing tests of the steel under different heating temperatures and holding times. The tests were performed on a Gleeble-3800 thermo-mechanical simulation machine. Austenitizing temperatures 1223, 1323, 1373, and 1423 K were chosen, and holding time varied from 0 to 480 s. Experimental results suggest that austenite grains grow gradually with the increase of heating temperature, and holding time has an important effect on the growth of austenite grains. The time exponent for the growth is bigger at higher temperature, and the growth rate decreases with increasing time. On the basis of previous models and experimental results, a mathematical model that can describe the growth behavior of austenite grains in the tested steel under different heating temperatures and holding times was obtained using regression analysis. The predicted grain sizes by the model are in good agreement with measured ones.  相似文献   

15.
基于Matlab的300M钢奥氏体晶粒的长大规律   总被引:1,自引:0,他引:1  
研究了300 M钢在不同加热温度(850~1180℃)和保温时间(5~120 min)下的奥氏体晶粒长大规律。绘制了300 M钢奥氏体晶粒尺寸在不同加热温度和保温时间下的等值线图;利用Sellars晶粒长大模型,构建了300 M钢的奥氏体晶粒长大数学模型。结果表明,300 M钢在高温加热时具有较好的抗晶粒粗化能力,在1050℃左右开始粗化。奥氏体晶粒尺寸等值线图可定性和定量预测奥氏体晶粒长大规律;奥氏体晶粒长大数学模型可用两个数学公式来描述,即当加热温度为850℃≤T≤1050℃时,d6.14=texp(68.97-64945.88/T);当加热温度为1050℃≤T≤1180℃时,d7.39=texp(134.56-144504.52/T)。  相似文献   

16.
Effects of normalizing and annealing treatments on the microstructure of Ti-48Al-2Cr-2Nb (at.%) were investigated. Normalizing processes were done at 1385 ± 5 °C in α-phase domain with the heating rate of 10 °C/min, the average cooling rate of 30 °C/min, and the holding times of 5, 10, 15, 20, and 25 min. The annealing process was done at the same temperature and heating rate, the holding time of 15 min, and the average cooling rate of 2 °C/min. Microstructures, phases, and hardness levels were studied by optical and field emission electron microscopic observations, x-ray diffractometry (XRD), and microhardness testing, respectively. Also, crystallographic texture variations were analyzed by means of texture coefficient and XRD results. Experimental results showed a linear direct relationship between treatment time and grain size, up to 15 min. A linear reversed behavior was observed for longer times. The untreated alloy consisted of γ and α2 phases with a columnar morphology with the length of about 300 μm. A near-lamellar microstructure with equiaxed gamma grains, Widmansttäten, and laminar γ + α2 colonies was obtained by the normalizing process. The maximum reduction of the grain size was about 70%, as achieved by normalizing with the 15 min holding time. A texture-free microstructure was acquired by normalizing treatment in comparison with strong texture of the as-cast and annealed alloys.  相似文献   

17.
刘峰  庞玉华  罗远  孙琦  王海  刘东 《金属热处理》2021,46(10):137-143
研究了07MnNiMoDR钢淬火和回火制度与晶粒尺寸和多边形铁素体含量的关系,建立了淬火保温时奥氏体尺寸窗口和回火保温时多边形铁素体含量窗口,确定了更为精准的热处理工艺。结果表明:奥氏体晶粒尺寸随淬火温度的升高、保温时间的延长而变大,均匀性存在最佳区间,合理的淬火制度为加热温度(940±10) ℃保温(80±10) min;随回火温度升高,约650 ℃出现多边形铁素体,其含量随回火温度的升高、保温时间的延长而增加,合理的回火制度为:加热温度(665±5) ℃、保温时间(165±15) min。优选后最佳热处理工艺为940 ℃×80 min淬火和660 ℃×180 min回火,最终性能测试结果表明:伸长率、冲击吸收能量和屈服强度相比国标分别提升了40.88%、206.25%和12.1%。  相似文献   

18.
The austenite growth behavior of non-quenched and tempered steels (casted by continuous casting and molding casting processes) was studied. The austenite grain size of steel B casted by continuous casting process is smaller than that of steel A casted by molding casting process at the same heating parameters. The abnormal austenite growth temperature of the steels A and B are 950 °C and 1000 °C, respectively. Based on the results, the models for the austenite grain growth below and above the abnormal austenite growth temperature of the investigated steels were established. The dispersedly distributed fine particles MnS in steel B is the key factor refining the austenite grain by pinning the migration of austenite grain boundary. The elongated inclusions MnS are ineffective in preventing the austenite grain growth at high heating temperature. For the non-quenched and tempered steel, the continuous casting process should be adopted and the inclusion MnS should be elliptical, smaller in size and distributed uniformly in order to refine the final microstructure and also improve the mechanical properties.  相似文献   

19.
加热温度对含Nb中碳钢奥氏体晶粒长大的影响   总被引:1,自引:0,他引:1  
利用微合金析出物与临界晶粒尺寸的定量关系,研究了Si含量较高的中碳Nb微合金钢在不同加热温度下的奥氏体晶粒长大规律。结果表明,随着加热温度的升高,试验钢中奥氏体晶粒逐渐长大,当温度高于1100℃时,晶粒开始粗化。由经验模型可得,随着温度的升高,析出相的体积分数逐渐减少,而颗粒半径逐渐增大,由于二者的共同作用导致了奥氏体晶粒在高于1100℃时迅速粗化;在实验的基础上,得到了适用于试验钢的晶粒长大模型。  相似文献   

20.
The 3003 aluminum alloys with four different initial grain sizes were deformed by isothermal compression in the range of deformation temperature 300–500 °C at strain rate 0.01–10.0 s?1 with Gleeble-1500 thermal simulator. The results show that the smaller the initial grain size of the alloy, the greater the required deformation resistance, and the smaller the peak strain, which is conducive to the occurrence of dynamic recrystallization (DRX). The DRX critical strain increases with the decrease of the deformation temperature or the increase of the strain rate, and the DRX volume fraction increases with the decrease of the strain rate and the increase of the deformation temperature. The average grain size of 3003 aluminum alloy after deformation is smaller than that before deformation. The smaller the initial grain size, the lower the critical recrystallization strain. So the DRX is carried out more fully, contributing to the thermoplastic deformation of the alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号