首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plane bending fatigue tests are conducted to investigate fatigue crack initiation mechanisms in coarse-grained magnesium alloy, AZ31, under the stress ratios R = ?1 and 0.1. The initial crystallographic structures are analyzed by an electron backscatter diffraction method. The slip or twin operation during fatigue tests is identified from the line angle analyses based on Euler angles of the grains. Under the stress ratio R = ?1, relatively thick tension twin bands are formed in coarse grains. Subsequently, compression twin or secondary pyramidal slip operates within the tension twin band, resulting in the fatigue crack initiation. On the other hand, under R = 0.1 with tension-tension loading cycles, twin bands are formed on the specimen surface, but the angles of those bands do not correspond to tension twins. Misorientation analyses of c-axes in the matrix grain and twin band reveal that double twins are activated. Under R = 0.1, fatigue crack initiates along the double twin boundaries. The different manners of fatigue crack initiation at R = ?1 and 0.1 are related to the asymmetricity of twining under tension and compression loadings. The fatigue strengths under different stress ratios cannot be estimated by the modified Goodman diagram due to the effect of stress ratio on crack initiation mechanisms.  相似文献   

2.
Subsurface cracks in mechanical contact loading components are subjected to mixed mode I/II, so it is necessary to evaluate the fatigue behavior of materials under mixed mode loading. For this purpose, fatigue crack propagation tests are performed with compact tension shear specimens for several stress intensity factor (SIF) ratios of mode I and mode II. The effect of compressive mode I loading on mixed mode I/II crack growth rate and fracture surface is investigated. Tests are carried out for the pure mode I, pure mode II, and two different mixed mode loading angles. On the basis of the experimental results, mixed mode crack growth rate parameters are proposed according to Tanaka and Richard with Paris’ law. Results show neither Richard’s nor Tanaka’s equivalent SIFs are very useful because these SIFs depend strongly on the loading angle, but Richard’s equivalent SIF formula is more suitable than Tanaka’s formula. The compressive mode I causes the crack closure, and the friction force between the crack surfaces resists against the crack growth. In compressive loading with 45° angle, da/dN increases as K eq decreases.  相似文献   

3.
The powder metallurgy and arc-cast types of wrought molybdenum stock were studied in rotating beam fatigue. Endurance ratios of unnotched specimens after 5×107 cycles were found to be 0.74 and 0.81, respectively. Fatigue notch factors (Kf) of 1.36 and 2.05, respectively, were obtained on V-notched specimens having a theoretical stress-concentration factor Kt = 3.1.  相似文献   

4.
Transition of corrosion pit to crack under fatigue condition was investigated in high-strength 7075-T6 aluminum alloy. The pit was formed at the edge of a hole in a specimen. Specimen was subjected to a constant stress during the pit formation. Two types of corrosion pit were considered: corner-pit and through-pit. Two sizes were tested for each pit type. Also, the baseline data of cycles to initiate a 250-µm-long crack were established when the corrosion pit was created without any applied stress on the specimen, i.e., S appl = 0. The cycles to initiate a 250-µm-long crack initially decreased with increasing S appl relative to the baseline value and then increased with increasing S appl such that this increase was significant with higher value of S appl. The transition between this increase and decrease occurred when the S appl was greater or less than a value which caused the onset of plastic deformation at the root of the pit, respectively. Microstructural analysis showed that this decrease in cycles to initiate the crack was due to microcracks at the pit front which developed at the lower level of S appl, and the increase was due to plastic deformation at the higher levels of S appl.  相似文献   

5.
Structural Performance of Inconel 625 Superalloy Brazed Joints   总被引:1,自引:0,他引:1  
The purpose of this work was to investigate tensile and fatigue behaviors of Inconel 625 superalloy brazed joints after transient liquid-phase bonding process. Brazing was performed in a vacuum furnace using a nickel-based filler metal in a form of paste to join wrought Inconel 625 plates. Mechanical tests were carried out on single-lap joints under various lap distance-to-thickness ratios. The fatigue crack initiation and crack growth modes were examined via metallographic analysis, and the effect of local stress on fatigue life was assessed by finite element simulations. The fatigue results show that fatigue strength and endurance limit increase with overlap distance, leading to a relatively large scatter of results. Fatigue cracks nucleated in the high-stressed region of the weld fillets from brittle eutectic phases or from internal brazing cavities. The present work proposes to rationalize the results by using the local stress at the brazing fillet. When using this local stress, all fatigue-obtained results find themselves on a single S-N curve, providing a design curve for any joint configuration in fatigue solicitation.  相似文献   

6.
Bridges are cross connections in a crack that contract its faces behind the crack tip. They appear because of the inhomogeneity of the material or differences in the kinematics of fracture. We obtained a general solution to the nonlinear singular integral equation that relates the crack opening h(x) to the stress caused by bridges p(x) and determined the stress-intensity factor F(B) (degree of unloading of the crack tip due to the presence of bridges) depending on the dimensionless stiffness of bridges B. As the measure of the efficiency of bridges, we suggest the ratio of the stress for crack start in a matrix without bridges σm to that in the presence of bridges σ. When bridges with a strength σu occupy a fraction f of the fracture area, their efficiency Y(ζ, B) depends on the degree of reinforcement ζ = fσum and on their stiffness B. The Y(ζ, B) dependences have been obtained in an explicit form for the limiting cases of brittle and fully ductile bridges.  相似文献   

7.
The generalized Thomson formula Tm = Tm(∞)(1-δ)R for the melting point of small objects Tm has been analyzed from the viewpoint of the thermodynamic theory of similarity, where R is the radius of the particle and Tm(∞) is the melting point of the corresponding large crystal. According to this formula, the parameter δ corresponds to the value of the radius of the Tm(R-1) particle obtained by the linear extrapolation of the dependence to the melting point of the particle equal to 0 K. It has been shown that δ = αδ0, where α is the factor of the asphericity of the particle (shape factor). In turn, the redefined characteristic length δ0 is expressed through the interphase tension σsl at the boundary of the crystal with its own melt, the specific volume of the solid phase vs and the macroscopic value of the heat of fusion λ0 = 2σslvs. If we go from the reduced radius of the particle R/δ to the redefined reduced radius R/r1 or R/d, where r1 is the radius of the first coordination shell and dr1 is the effective atomic diameter, then the simplex δ/r1 or δ/d will play the role of the characteristic criterion of thermodynamic similarity. At a given value of α, this role will be played by the simplex Estimates of the parameters δ0 and δ0/d have been carried out for ten metals with different lattice types. It has been shown that the values of the characteristic length δ0 are close to 1 nm and that the simplex δ0/d is close to unity. In turn, the calculated values of the parameter δ agree on the order of magnitude with existing experimental data.  相似文献   

8.
The development of the γ-α’ martensitic transformation (MT) upon tensile deformation of single crystals of austenitic stainless steels of compositions (wt %) Fe-17% Cr-12% Ni-2% Mn-0.75% Si (I) and Fe-18% Cr-12% Ni-2% Mo-0.015% C (II) has been studied as a function of the crystal-axis orientation and test temperature by X-ray diffraction and electron microscopy. It has been established that the orientation dependence of the slip deformation preceding the γ-α’ MT is determined by two factors, namely, the orientation dependence of slip deformation preceding the γ-? MT and the orientation dependence of the work U necessary for the formation of the α’-martensite crystals. The orientation dependence of slip deformation preceding the γ-? MT leads to the γ-α’ MT in the [\(\bar 1\)11], [\(\bar 1\)23], [011], and [012] crystals with different defect densities and, correspondingly, at different stress levels. In the [001] crystals, no γ-α’ MT is observed macroscopically since the γ-? MT in these crystals is suppressed. It has been established that the γ-α’ MT in the [\(\bar 1\)11], [011], [\(\bar 1\)23], and [012] crystals can be developed at T = 300 K after preliminary deformation at T = 77 K. The development of the γ-α’ MT at T = 300 K is physically related to the growth of the α’-martensite nuclei formed upon plastic deformation at T = 77 K.  相似文献   

9.
Three initial tensile specimens having different textures and, in consequence, different r-values were cut from a sheet of an interstitial-free steel. Using these specimens, the effect of r-value and texture on plastic deformation and the necking behavior were studied by tackling the strain state and texture during tensile tests. A reduced decrease in work hardening rate of tensile specimens with higher r-values led to a slower onset of diffuse necking which offers an increased uniform elongation. A slower reduction in thickness of specimens with a higher r-value provided a favorable resistance against onset of failure by localized necking.  相似文献   

10.
Fatigue crack growth testing of 2024-T3 Aluminum plate was performed using compact tension (CT) specimens with chromate and non-chromate primer paint systems to evaluate the effects of the coatings on fatigue crack growth rates. The tests were conducted in lab air and sea water environments for each of the coating systems. Standard E399 CT specimens were tested to determine the influence level of environmentally assisted cracking (corrosion fatigue) on crack growth rates and cyclic count to prescribed pre-crack and final crack lengths. Increasing stress range (ΔK) tests were conducted at 10 Hz in the range of 6.5 to 26.5 MPa \(\sqrt m\) . It was determined that the coated specimens exhibited a 12% shorter total life, on average, than the bare specimens for the lab air cases. In the case of salt water exposure, the coated specimens exhibited approximately 10% life increase over the bare specimens. The number of cycles to the 2.54 mm pre-crack length for the coated specimens was all less than the cycle count for the bare tests. In each case (coated or bare), there was an increased growth rate at the lower stress ranges in the salt water environment, with the chromate system case displaying the smallest change (increase). It can be concluded that the coated specimens initiate cracks and propagate faster than the bare specimens for short cracks at low stress range, but the environmental influence on the specimens is quickly overshadowed as the cracks elongate and the rate of growth increases. The coated specimens exhibited a higher total life cycle count to final crack length for this testing.  相似文献   

11.
This work presents the results of fatigue tests of MAR 247 alloy flat specimens with aluminides layers of 20 or 40 µm thickness obtained in CVD process. Fatigue test was conducted at amplitude equal to half of maximum load and ranging between 300 and 650 MPa (stress asymmetry ratio R = 0, frequency f = 20 Hz). Additionally, 4 of the tests, characterized by the highest amplitude, were accompanied with non-contact strain field measurements by means of electronic speckle pattern interferometry and digital image correlation. Results of these measurements allowed to localize the areas of deformation concentration identified as the damage points of the surface layer or advanced crack presence in core material. Identification and observation of the development of deformation in localization areas allowed to assess fatigue-related phenomena in both layer and substrate materials.  相似文献   

12.
The simple power relationship σ?=?Κε p n satisfactorily expresses the tensile flow behavior of many metals and alloys in their uniform plastic strain regime. However, many FCC materials with low stacking fault energy have opposed such power law relationship. Alloy 617, an age-hardenable Ni-based superalloy is also observed not to obey the simple power law relationship neither in its solution-treated nor in its aged conditions. Various flow relationships were used to obtain the best fit for the tensile data, and different relationships were identified for the different aged conditions. The work-hardening rate (θ) demonstrates three distinct regions for all aged conditions, and there is an obvious change in the trend of θ versus σ. In the initial portion, θ decreases rapidly followed by a gradual increase in the second stage and again a decrease in its third stage is perceived in the Alloy 617. These three-stage characteristics are attributed to a commonly known precipitate, γ′: Ni3(Ti, Al) which evolves during aging treatment and well recognized under transmission electron microscopy (TEM) observation. TEM results also reveal a slight degree of coarsening in γ′ over aging. The tensile flow and the work-hardening behavior are well correlated with other microstructural evolution during the aging treatments.  相似文献   

13.
Polycrystalline Cu–Al–Ni–Fe-based shape memory alloys with different chemical composition were produced in an arc-melting furnace under an argon atmosphere. Homogenized and aged specimens were prepared for multiple analyses. The temperatures of reversible martensitic transformations, namely As, Af, Ms, Mf, Amax and ΔH enthalpy values were determined by a DSC device. The phase transition analysis from the room temperature to 850°C was undertaken by DTA. To characterize the lattice structure, an XRD analysis was conducted, the results of which were confirmed by microstructure images obtained from optical microscope observations.  相似文献   

14.
In this work, the magnetic contribution to the isothermal entropy change ΔS upon switching on a magnetic field has been investigated in correlated metallic ferromagnets within the Hubbard nondegenerate model. The analytical expression ΔS for obtained in the mean-field approximation depends substantially on the electronic structure (density of electron states), which presents new ways to increase the absolute value of ΔS relative to the known result obtained within the Heisenberg model. The temperature dependence of ΔS has been calculated at different values of the Coulomb interaction U and the number of electrons n for the Bethe infinite-dimensional lattice and square lattice with allowance for transfer integrals in the first (t) and the second (t') coordination shells. It has been found that the presence of Van Hove singularities in the electronic spectrum near the Fermi level makes it possible to considerably increase |ΔS| at a fixed magnetic field. The possibility of first-order magnetic phase transitions depending on the model parameters has been analyzed.  相似文献   

15.
A generalized theory of the normal properties of metals in the case of electron–phonon (EP) systems with a nonconstant density of electron states has been used to study the normal state of the SH3 and SH2 phases of hydrogen sulfide at different pressures. The frequency dependence of the real Re Σ (ω) and imaginary ImΣ (ω) parts of the self-energy Σ (ω) part (SEP) of the Green’s function of the electron Σ (ω), real part Re Z (ω), and imaginary part Im Z (ω) of the complex renormalization of the mass of the electron; the real part Re χ (ω) and the imaginary part Imχ (ω) of the complex renormalization of the chemical potential; and the density of electron states N (ε) renormalized by strong electron–phonon interaction have been calculated. Calculations have been carried out for the stable orthorhombic structure (space group Im3?m) of the hydrogen sulfide SH3 for three values of the pressure P = 170, 180, and 225 GPa; and for an SH2 structure with a symmetry of I4/mmm (D4h1?7) for three values of pressure P = 150, 180, and 225 GP at temperature T = 200 K.  相似文献   

16.
Both thermoplastic formability and electrical conductivity of Al–Ni–Y metallic glass with 12 different compositions have been investigated in the present study with an aim to apply as a functional material, i.e. as a binder of Ag powders in Ag paste for silicon solar cell. The thermoplastic formability is basically influenced by thermal stability and fragility of supercooled liquid which can be reflected by the temperature range for the supercooled liquid region (ΔTx) and the difference in specific heat between the frozen glass state and the supercooled liquid state (ΔCp). The measured ΔTx and ΔCp values show a strong composition dependence. However, the composition showing the highest ΔTx and ΔCp does not correspond to the composition with the highest amount of Ni and Y. It is considered that higher ΔTx and ΔCp may be related to enhancement of icosahedral SRO near Tg during cooling. On the other hand, electrical resistivity varies with the change of Al contents as well as with the change of the volume fraction of each phase after crystallization. The composition range with the optimum combination of thermoplastic formability and electrical conductivity in Al–Ni–Y system located inside the composition triangle whose vertices compositions are Al87Ni3Y10, Al85Ni5Y10, and Al86Ni5Y9.  相似文献   

17.
Co-Cu alloys were prepared by mechanical alloying using different reaction mixtures (mechanical mixture of Co and Cu powders, composite powders (Co(100 ? y)P(y))100 ? x /Cu x with a crystalline core, and composite powders (Co(100 ? y)P(y))100 ? x /Cu x with an amorphous core). The use of a complex of structural and magnetostructural methods showed that these alloys are nonuniform nanocomposite materials consisting of two phases, namely, copper- and cobalt-based solid solutions. During the mechanical alloying of the composite powders, parameters that are sensitive to the short-range-order structure of both phases were found to be changed, namely, the lattice parameter in the Cu-based solid solution as determined from X-ray diffraction patterns, and the Bloch constant that is sensitive to the short-range order in the Co-based solid solution change. In the alloys prepared by mechanical alloying of composite powders with an amorphous core, the lattice parameter a and the Bloch constant B reach values corresponding to metastable Co100 ? x Cu x solid solutions in milling times of 1.5–2.0 h. These times are lower by 1–2 orders of magnitude than the typical times that are necessary for forming metastable Co-Cu solid solutions by standard methods of mechanical alloying from mixtures of powders.  相似文献   

18.
19.
A series of FeCo-based thin films were prepared by magnetron sputtering without applying an induced magnetic field.The microstructure,electrical properties,magnetic properties and thermal stability of FeCo,FeCoSiN monolayer thin film and[FeCoSiN/SiN_x]_n multilayer thin film were investigated systematically.When FeCo thin film was doped with Si and N,the resistivity and soft magnetic properties of the obtained FeCoSiN thin film can be improved effectively.The coercivity(H_c),resistivity(ρ) and ferromagnetic resonance frequency(f_r) can be further optimized for the[FeCoSiN/SiN_x]_n multilayer thin film.When the thickness of FeCoSiN layer and SiN_x layer is maintained at 7 and 2 nm,the H_c,p and f_r for[FeCoSiN/SiN_x]_n multilayer thin film are 225 A·m~(-1)392 μΩ·cm~(-1) and 4.29 GHz,respectively.In addition,the low coercivity of easy axis(H_(ce) ≈ 506 A·m~(-1)) of[FeCoSiN/SiN_x]_n multilayer thin film can be maintained after annealing at 300 ℃ in air for 2 h.  相似文献   

20.
The addition of nitrogen (0.10 to 0.20 pct) to Fe-Cr-Ni alloys of simulated commercial purity results in a real displacement of the σ phase boundaries to higher chromium contents. The effect is small for the (γ + σ)/γ boundary, but is pronounced for the (γ + α + σ)/(γ + α) boundary. Although there is an indication of an exceptionally large shift of the σ boundaries to higher chromium contents, especially in steels with nitrogen over 0.2 pct, the major portion of this apparent shift results from the fact that carbide and nitride precipitation cause “chromium impoverishment” of the matrices. The effect of combined additions of nitrogen and silicon to the Fe-Cr-Ni phase diagram is demonstrated also. Nitrogen can nullify the effect of about 1 pct Si in shifting the (γ + σ)/γ phase boundary to lower values of chromium at all nickel levels from 8 to 20 pct. Nitrogen can nullify this σ-forming effect of about 2 pct Si at the 8 pct Ni level, but not at the 20 pct Ni level. The alloys studied were in both the cast and the wrought conditions. There are indications that the σ phase forms more slowly in the cast alloys than in the wrought alloys if both are in the completely austenitic state. The presence of δ ferrite in the cast alloys accelerates the formation of σ. Cold working increases the rate of σ formation in both cast and wrought alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号