首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a method for decoding high minimal distance (dmin) short codes, termed Cortex codes. These codes are systematic block codes of rate 1/2 and can have higher dmin than turbo codes. Despite this characteristic, these codes have been impossible to decode with good performance because, to reach high dmin, several encoding stages are connected through interleavers. This generates a large number of hidden variables and increases the complexity of the scheduling and initialization. However, the structure of the encoder is well suited for analog decoding. A proof‐of‐concept Cortex decoder for the (8, 4, 4) Hamming code is implemented in subthreshold 0.25‐μm CMOS. It outperforms an equivalent LDPC‐like decoder by 1 dB at BER=10?5 and is 44 percent smaller and consumes 28 percent less energy per decoded bit.  相似文献   

2.
3.
4.
Optical, nonlinear optical, and electrooptical pg-properties of 4'-nitrobenzylidene-3-acetamino-4-methoxyaniline (MNBA) single crystals have been investigated. The refractive indices were determined in the wavelength range of 514 to 1064 nm using an interferometric method. The electrooptical coefficients r11, r13, r31 , and r33 were measured using a phase modulation technique. The dispersion of the largest electrooptical coefficient, r 11 (=29 pm/V at λ=633 nm), was seen to follow the theoretical two-level model. Using the standard Maker fringe technique, we determined the nonlinear optical susceptibilities. The largest coefficient was found to be d11=175 pm/V at λ=1064 nm. Electric-field-induced second-harmonic generation was used for the determination of the molecular second-order nonlinear optical susceptibility yielding a good quantitative agreement when compared with the largest nonlinear optical and electrooptical coefficients in the framework of the molecular gas model with charge transfer along the polar molecular axis. Electroabsorption measurements near the band edge were performed that allowed us to calculate the field-induced frequency shift of the dominant oscillator. This field-induced frequency shift is of the same order of magnitude as the frequency shift calculated from the electric field-induced changes of the refractive indices (electrooptical effect)  相似文献   

5.
KYF4/Yb3+, Er3+ nanocrystals with a mean diameter of approximately 13 nm were synthesized at 200 °C in the high boiling organic solvent N‐(2‐hydroxyethyl)ethylenediamine (HEEDA). The particles crystallize in the cubic phase known from α‐NaYF4 and form transparent colloidal solutions in tetraethylene glycol (TEG) or propanol. Solutions containing 1 wt % of the nanocrystals in TEG display visible upconversion emission upon continuous wave (CW) excitation at 978 nm. Growing undoped KYF4 on the surface of the KYF4/Yb3+, Er3+ nanocrystals increases the upconversion efficiency by more than a factor of 20. The XRD data of these particles, display a slight increase in the mean particle size from 13 to 15.5 nm, indicating that only a part of the subsequently added KYF4 shell material is deposited onto the particle surface. Nevertheless the performed surface modification obviously leads to core/shell structured particles.  相似文献   

6.
7.
This paper presents a unified, radix-4 implementation of turbo decoder, covering multiple standards such as DVB, WiMAX, 3GPP-LTE and HSPA Evolution. The radix-4, parallel interleaver is the bottleneck while using the same turbo-decoding architecture for multiple standards. This paper covers the issues associated with design of radix-4 parallel interleaver to reach to flexible turbo-decoder architecture. Radix-4, parallel interleaver algorithms and their mapping on to hardware architecture is presented for multi-mode operations. The overheads associated with hardware multiplexing are found to be least significant. Other than flexibility for the turbo decoder implementation, the low silicon cost and low power aspects are also addressed by optimizing the storage scheme for branch metrics and extrinsic information. The proposed unified architecture for radix-4 turbo decoding consumes 0.65 mm2 area in total in 65 nm CMOS process. With 4 SISO blocks used in parallel and 6 iterations, it can achieve a throughput up to 173.3 Mbps while consuming 570 mW power in total. It provides a good trade-off between silicon cost, power consumption and throughput with silicon efficiency of 0.005 mm2/Mbps and energy efficiency of 0.55 nJ/b/iter.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
To improve the operational flexibility of the piezoelectric microgripper, a new four-degree-of-freedom piezoelectric microgripper was designed and fabricated. The clamp fingers can move both along the clamping direction and along its vertical direction. Also, clamping experiments were conducted on a φ 300 μm × 20 mm micro-shaft. Based on the transverse inverse piezoelectric effect of two groups of vertical intersections, a new configuration of a four-degree-of-freedom piezoelectric micro-gripper is designed. It can produce micro-displacement along the clamping direction and vertical clamping direction simultaneously. According to the Euler-Bernoulli beam equation, the Lagrangian function method and Hamilton variational principle are used to model the four-degree-of-freedom piezoelectric micro-gripper. Then, based on the optimization of the geometric parameters of the fingers, the static and dynamic characteristics of the microgripper are analyzed by the finite element method. After that, the micro-gripper is made using lithography, gluing, and laser cutting. Finally, the piezoelectric microgripper's static and dynamic characteristics and the micro-shaft's clamping operation are tested by experiments. The experimental results show that the maximum displacement, response time, and natural frequency of the designed micro-gripper along and perpendicular to the clamping direction agree well with the finite element simulation. The designed microgripper exhibits a promising prospect in practical micromanipulation applications.  相似文献   

16.
Herein, a facile approach toward transforming a 2D polypropylene flexible mesh material into a 4D dynamic system is presented. The versatile platform, composed by a substrate of knitted fibers of isotactic polypropylene (iPP) mesh and a coating of thermosensitive poly(N‐isopropylacrylamide‐co‐N,N’‐methylene bis(acrylamide) (PNIPAAm‐co‐MBA) hydrogel, covalently bonded to the mesh surface, after cold‐plasma surface treatment and radical polymerization, is intended to undergo variations in its geometry via its reversible folding/unfolding behavior. The study is the first to trace the 3D movement of a flat surgical mesh, intended to repair hernia defects, under temperature and humidity control. An infrared thermographic camera and an optical microscope are used to evaluate the macroscopic and microscopic structure stimulus response. The presence of the PP substrate and the distribution of the gel surrounding the PP threads, affect both the PNIPAAM gel expansion/contraction as well as the time of folding/unfolding response. Furthermore, PP‐g‐PNIPAAm meshes show an increase in the bursting strength of ≈16% with respect to the uncoated mesh, offering a strongest and adaptable system for its future implantation in human body. The findings reported offer unprecedented application possibilities in the biomedical field.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号