首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kenaf fibers generally has some advantages such as eco-friendly, biodegradability, renewable nature and lighter than synthetic fibers. The aims of the study are to characterize and evaluate the physical and mechanical properties of continuous unidirectional kenaf fiber epoxy composites with various fiber volume fractions. The composites materials and sampling were prepared in the laboratory by using the hand lay-up method with a proper fabricating procedure and quality control. Samples were prepared based on ASTM: D3039-08 for tensile test and the scanning electron microscopy (SEM) was employed for microstructure analysis to observe the failure mechanisms in the fracture planes. A total of 40 samples were tested for the study. Results from the study showed that the rule of mixture (ROM) analytical model has a close agreement to predict the physical and tensile properties of unidirectional kenaf fiber reinforced epoxy composites. It was also observed that the tensile strength, tensile modulus, ultimate strain and Poisson’s ratio of 40% fiber volume content of unidirectional kenaf fiber epoxy composite were 164 MPa, 18150 MPa, 0.9% and 0.32, respectively. Due to the test results, increasing the fiber volume fraction in the composite caused the increment in the tensile modulus and reduction in the ultimate tensile strain of composite.  相似文献   

2.
Elephant grass stalk fibers were extracted using retting and chemical (NaOH) extraction processes. These fibers were treated with KMnO4 solution to improve adhesion with matrix. The resulting fibers were incorporated in a polyester matrix and the tensile properties of fiber and composite were determined. The fibers extracted by retting process have a tensile strength of 185 MPa, modulus of 7.4 GPa and an effective density of 817.53 kg/m3. The tensile strength and modulus of chemically extracted elephant grass fibers have increased by 58 and 41%, respectively. After the treatment the tensile strength and modulus of the fiber extracted by retting have decreased by 19, 12% and those of chemically extracted fiber have decreased by 19 and 16%, respectively. The composites were formulated up to a maximum of 31% volume of fiber resulting in a tensile strength of 80.55 MPa and tensile modulus of 1.52 GPa for elephant grass fibers extracted by retting. The tensile strength and the modulus of chemically extracted elephant grass fiber composites have increased by approximately 1.45 times to those of elephant grass fiber composite extracted by retting. The tensile strength of treated fiber composites has decreased and the tensile modulus has shown a mixed trend for the fibers extracted by both the processes. Quantitative results from this study will be useful for further and more accurate design of elephant grass fiber reinforced composite materials.  相似文献   

3.
Natural fiber composites containing diglycidylphenylphosphate (DGPP) resin were prepared from DGPP, diglycidyl ether of bisphenol-A (DGEBA), and Borassus fruit fiber. Morphology, thermal, and mechanical properties of blends and fiber-reinforced composites were investigated. The tensile strength, flexural strength, and tensile modulus increased up to 10% addition of DGPP and decreased with high percentage of DGPP. The flexural strength of composites was increased up to 15% addition of DGPP due to good dispersion and toughening of DGPP in DGEBA. As observed by the SEM analysis, the matrix–fiber adhesion was poor in the case of 20% DGPP containing composites and failure occurred through fiber pullout whereas for composites with 5 and 10% of DGPP, interaction of fiber and matrix was strong and failure occurred through fiber breakage rather than fiber pullout. Addition up to 15% DGPP improved desired thermal and mechanical properties of these composites.  相似文献   

4.
采用液相高剪切混合、共沉预处理技术改善纤维在橡胶基体中的分散及其界面结合,制备了废丁苯胶乳/废聚酯纤维高强高模复合材料,并系统研究了复合材料的硫化特性、力学性能、动态力学性能和断面微观形貌。结果表明,当纤维的质量分数为60%时,复合材料具有最佳的力学性能,其拉伸强度为23.2 MPa,而未填充纤维的硫化胶强度仅为9.3MPa;同时,室温下材料的储能模量提高了约19倍。  相似文献   

5.
利用层内混杂的方式制备碳/芳纶纤维混杂纬编双轴向多层衬纱织物,通过对材料进行拉伸、三点弯曲等实验研究该织物增强复合材料的力学性能及混杂比对其力学性能的影响。结果表明,按照一定的混杂比加入芳纶纤维后复合材料的拉伸性能提高,表现出积极的混杂效应。由于延伸性好的芳纶纤维的加入,使复合材料的拉伸断裂伸长率明显提高,材料破坏模式出现了完全脆性断裂模式(C12材料破坏形式)和“扫帚”形纤维断裂模式(C8A4,C6A6材料破坏形式)。此外,按照一定的混杂比加入芳纶纤维也有效改善了碳纤维增强复合材料的破坏韧性,碳/芳纶纤维混杂MBWK织物增强复合材料的弯曲强度和弯曲模量随混杂比的提高而呈下降趋势,当复合材料中芳纶含量从42%(体积分数,下同)(C6A6)到59.2%(C4A8)的变化过程中,弯曲强度和弯曲模量的降低率较高。0°试样在混杂比为59.2%(C4A8)时,弯曲挠度最大,达到7.49 mm,远高于纯芳纶纤维或纯碳纤维增强的复合材料。所有90°混杂复合材料试样的弯曲挠度均高于纯芳纶纤维或纯碳纤维增强的复合材料,表现出积极的混杂效应。  相似文献   

6.
采用浇铸成型工艺制备含0.5wt%、长度分别为1 mm、3 mm、5 mm的短切玻璃纤维/环氧树脂(GF/EP)复合材料,研究含活性酚羟基和不含酚羟基的两种聚酰亚胺(PI)处理GF表面对纤维束拉伸强度及GF/EP复合材料力学性能的影响,并进一步研究PI处理GF对复合材料热性能的影响。研究结果表明,经过PI处理的GF,集束性和拉伸强度得到提高。含活性酚羟基聚酰亚胺(PI1)处理的GF拉伸强度由原丝束的517 MPa提高到1 032 MPa,不含酚羟基聚酰亚胺(PI2)处理的GF提高到986 MPa。当PI1处理的GF长度为3 mm时,GF/EP复合材料的力学性能最好,拉伸强度比未处理的提高23.62%,拉伸模量提高34.03%,弯曲强度提高28.74%,断裂韧性提高13.04%;PI2处理的GF,GF/EP复合材料拉伸强度提高15.87%,拉伸模量提高23.70%,弯曲强度提高14.11%,断裂韧性提高4.05%。此外,PI处理GF对GF/EP复合材料热性能也有一定程度的提高。  相似文献   

7.
《Composites Part A》2000,31(10):1117-1125
Composites of polypropylene (PP) reinforced with short glass fibers (SGF) and short carbon fibers (SCF) were prepared with extrusion compounding and injection molding techniques. The tensile properties of these composites were investigated. It was noted that an increase in fiber volume fraction led to a decrease in mean fiber length as observed previously. The relationship between mean fiber length and fiber volume fraction was described by a proper exponential function with an offset. The tensile strength and modulus of SGF/PP and SCF/PP composites were studied taking into account the combined effect of fiber volume fraction and mean fiber length. The results about the composite strength and modulus were interpreted using the modified rule of mixtures equations by introducing two fiber efficiency factors, respectively, for the composite strength and modulus. It was found that for both types of composites the fiber efficiency factors decreased with increasing fiber volume fraction and the more brittle fiber namely carbon fiber corresponded to the lower fiber efficiency factors than glass fiber. Meanwhile, it was noted that the fiber efficiency factor for the composite modulus was much higher than that for the composite strength. Moreover, it was observed that the tensile failure strain of the composites decreased with the increase of fiber volume fraction. An empirical but good relationship of the composite failure strain with fiber volume fraction, fiber length and fiber radius was established.  相似文献   

8.
对单向和多向混杂纤维复合材料的拉伸刚度进行了研究。在混合定律的基础上考虑混杂比和分散度对混杂效应的影响, 提出了单向混杂纤维复合材料拉伸模量的估算公式。通过实验得到了多向混杂纤维复合材料的拉伸模量, 并且采用经典层合板理论进行了估算, 基于混杂比以及分散度对拉伸模量的影响规律, 对多向混杂纤维复合材料拉伸模量的估算公式进行了修正。结果表明: 混杂纤维复合材料的拉伸模量与混杂比和分散度相关, 分散度的增大在一定程度上可以提高单向混杂纤维复合材料的纵向拉伸模量。采用经典层合板理论所得的拉伸模量与实验值有一定的误差, 而本文所提出的公式能够更加准确地估算混杂纤维复合材料的拉伸模量。   相似文献   

9.
采用环状对苯二甲酸丁二醇酯(CBT)原位聚合制备了连续玻璃纤维(GF)增强聚环状对苯二甲酸丁二醇酯(PCBT)复合材料。考察了聚合反应中催化剂用量对PCBT结晶度以及GF/PCBT复合材料力学性能的影响。当催化剂用量为0.5%(质量分数)时, PCBT的结晶度为53%, GF/PCBT的力学性能达到最佳, 拉伸强度为522 MPa, 拉伸模量为27 GPa, 弯曲强度为481 MPa, 弯曲模量为24.8 GPa, 层间剪切强度(ILSS)为43 MPa。SEM观察表明, 发现催化剂用量为0.5%时, 树脂与纤维的结合性较好。进一步研究了淬火和退火后处理对复合材料力学性能的影响。发现复合材料退火处理后具有较好的力学性能, 其中拉伸强度为545 MPa, 弯曲强度为495 MPa。  相似文献   

10.
以高强高模聚酰亚胺(PI)纤维为增强体,以航空级环氧树脂(EP)为基体,通过热熔法制备预浸料并采用热压罐成型技术制备了PI/EP复合材料层合板,对其力学性能和破坏形貌进行了分析。结果表明:高强高模PI纤维与EP具有良好的界面结合力,PI/EP复合材料的层间剪切强度为65.2 MPa,面内剪切强度为68.6 MPa;良好的界面结合状态能充分发挥PI纤维优异的力学性能,PI/EP复合材料的纵向拉伸强度达1 835 MPa,弯曲强度为834 MPa;PI/EP复合材料纵向拉伸破坏模式为散丝爆炸破坏,同时由于高强高模PI纤维还具有优异的韧性和较高的断裂伸长率,PI/EP复合材料从受力到失效断裂的时间较长;PI/EP复合材料纵向压缩破坏模式为45°折曲带破坏。高强高模PI/EP复合材料为航空航天先进复合材料增加了一个全新的选材方案。   相似文献   

11.
Hybrid composites of polypropylene reinforced with short glass fibers and short carbon fibers were prepared using extrusion compounding and injection molding techniques. The tensile properties of these composites were investigated taking into account the effect of the hybridization by these two types of short fibers. It was noted that the tensile strength and modulus of the hybrid composites increase while the failure strain of the hybrid composites decreases with increasing the relative carbon fiber volume fraction in the mixture. The hybrid effects for the tensile strength and modulus were studied by the rule of hybrid mixtures (RoHM) using the tensile strength and modulus of single-fiber composites, respectively. It was observed that the strength shows a positive deviation from that predicted by the RoHM and hence exhibits a positive hybrid effect. However, the values of the tensile modulus are close to those predicted by the RoHM and thus the modulus shows no existence of a hybrid effect. Moreover, the failure strains of the hybrid composites were found to be higher than the failure strain of the single carbon fiber-reinforced composite, indicating that a positive hybrid effect exists. Explanations for the hybrid effects on the tensile strength and failure strain were finally presented.  相似文献   

12.
设计了光热共引发环氧树脂-聚甲基丙烯酸丁酯(EP-PBMA)树脂,并制备了UV光固化玻璃纤维布增强EP-PBMA树脂基复合材料,研究了不同EP与PBMA质量比的玻璃纤维布/EP-PBMA复合材料在不同加载速率下的拉伸力学性能。结果表明: 玻璃纤维布/EP-PBMA复合材料具有明显的应变率效应;随着加载速率增大,复合材料的拉伸强度和弹性模量呈增大趋势;EP-PBMA树脂基体的组成对应变率效应有明显的影响;玻璃纤维布/EP-PBMA复合材料与纯EP基复合材料相比,在较低的加载速率下具有更高的拉伸强度,但当加载速率达到50 mm/min时拉伸强度较低。  相似文献   

13.
为提高玻纤增强环氧树脂复合材料的力学性能,采用静电植绒法将多壁碳纳米管(MWCNTs)附着在玻纤织物表面,得到改性的玻纤织物。利用一种低黏度的环氧树脂和所制得的改性织物,采用真空辅助成型工艺(VARI)制备了MWCNTs改性格玻纤织物/环氧树脂复合材料层合板,表征了层合板的力学性能。对进行力学实验后的MWCNTs改性玻纤织物/环氧树脂复合材料试样断口进行了SEM和OPM观察。结果显示:与未添加MWCNTs的玻纤织物/环氧树脂复合材料层合板相比,添加了MWCNTs的层合板的拉伸强度降低了10.24%,弯曲强度降低了13.90%,压缩强度降低了17.33%,拉伸模量和弯曲模量分别提高了19.38%和16.04%,压缩模量提高了13%;MWCNTs与玻纤织物之间的结合较弱,在拉伸作用下,存在明显的脱粘和分层;将改性玻纤织物在200℃下热压处理2h后,制备的MWCNTs改性玻纤织物/环氧树脂复合材料层合板的力学性能均有所提高,热压处理后树脂与玻纤织物之间的界面结合得到改善。  相似文献   

14.
The aim of this paper is to study the influence of fiber content on mechanical (i.e. tensile, flexural, impact, hardness and abrasion resistance) and thermal (i.e. TGA) properties of Kenaf bast fiber reinforced thermoplastic polyurethane (TPU) composites. The composite was prepared by melt-mixing method, followed by compression molding process. Different fiber loadings were prepared; namely, 20%, 30%, 40%, and 50% weight percent. A 30% fiber loading exhibited the best tensile strength, while modulus increased with increase of fiber content, and strain deteriorated with increase of fiber content. Flexural strength and modulus increased with increase of fiber loading. Increase of fiber loading resulted in decline in impact strength. Hardness increased by addition of 30% fiber content. Abrasion resistant decreased with increase of fiber loading. Fiber loading decreased thermal stability of the composite.  相似文献   

15.
以己内酰胺为单体,经热处理的苎麻纤维(RF)为增强材料,采用真空辅助树脂传递模塑成型工艺(VARTM)成功制备了苎麻纤维增强原位阴离子聚合尼龙6(APA6)复合材料.主要研究了热处理前后苎麻纤维表面官能团、结晶性能、力学性能和微观形貌的变化,并对复合材料的冲击断面、力学性能和热性能进行了考察.研究表明:当热处理温度为280℃时,苎麻纤维表面的羟基数量显著减少,结晶度略有降低,拉伸强度和模量有所下降,但苎麻纤维的形貌未有明显变化.RF/APA6复合材料中苎麻纤维与树脂的界面结合良好,与APA6相比,复合材料的拉伸强度略有提高,拉伸模量和弯曲性能得到明显提升,同时热稳定性显著提高.  相似文献   

16.
In this study, cocoa (Theobroma cacao) pod husk (CPH) fiber reinforced thermoplastic polyurethane (TPU) was prepared by melt compounding method using Haake Polydrive R600 internal mixer. The composites were prepared with different fiber loading: 20%, 30% and 40% (by weight), with the optimum processing parameters: 190 °C, 11 min, and 40 rpm for temperature, time and speed, respectively. Five samples were cut from the composite sheet. Mean value was taken for each composite according to ASTM standards. Effect of fiber loading on mechanical (i.e. tensile, flexural properties and impact strength) and morphological properties was studied. TPU/CPH composites showed increase in tensile strength and modulus with increase in fiber loading, while tensile strain was decreasing with increase in fiber loading. The composite also showed increase in flexural strength and modulus with increase in fiber content. Impact strength was deteriorated with increase in fiber loading. Morphology observations using Scanning Electron Microscope (SEM) showed fiber/matrix good adhesion.  相似文献   

17.
In this investigation, carnauba fibers obtained from the leaves of the carnauba palm tree were chemically modified and their potential for the development of a biodegradable composite was evaluated. Fiber treatments to improve interfacial bonding were carried out by alkali, peroxide, potassium permanganate and acetylation. Biodegradable composites were prepared using carnauba fibers and polyhydroxybutyrate (PHB) as matrix. Mechanical properties of the composites prepared with 10 wt.% of short carnauba fibers were investigated and related to fiber treatment. According to the results, the tensile strength of the composites made from peroxide treated fibers was superior to those using untreated fibers or any other fiber treatment. SEM observations on the fracture surface of the composites suggest improved fiber–matrix adhesion after peroxide treatment. This surface modification of the fibers was found to contribute to the enhancement of the mechanical properties of the composites, even though the tensile strength of the fibers was slightly reduced. Dynamic mechanical thermal analyses suggested improvement in storage modulus of the composites reinforced with carnauba fibers at higher temperatures as compared to the neat polymer.  相似文献   

18.
研究了PET短纤维和硅灰石晶须混杂增强硅树脂复合材料的拉伸性能。结果表明,相对少量硅灰石晶须加入到PET/硅树脂体系中会降低PET纤维的增强效果,材料的拉伸强度降低,但当硅灰石晶须的加入量很多时,材料的拉伸强度反而会明显提高。笔者对硅灰石晶须的加入量对PET短纤维增强系数的影响进行了定量分析。  相似文献   

19.
This work was to apply the vacuum-assisted resin infusion (VARI) process and use calcium carbonate inorganic nanoparticle impregnation (INI) to improve the mechanical properties and water resistance of the kenaf fiber/polyester composites. The results show that the modulus of elasticity (MOE), modulus of rapture (MOR), tensile modulus (TE) and tensile strength (TS) of the composites made with INI-treated fibers are increased by 33.1%, 64.3%, 22.3% and 67.8%, respectively, compared with the composites made with un-treated fibers. The thickness swelling of 24-h water submersion is reduced from 19.7% to 1.9%. The moisture contents of the composites after the conditioning and water submersion are reduced from 5.8% to 1.5% and 18.3% to 2.2%, respectively, when INI-treated fibers are employed. The improvement makes the kenaf fiber/polyester composites possible to replace the glass fiber SMC for the automobile application.  相似文献   

20.
In this research, vetiver grass was used as a filler in polypropylene (PP) composite. Chemical treatment was done to modify fiber surface. Natural rubber (NR) and Ethylene Propylene Diene Monomer (EPDM) rubber at various contents were used as an impact modifier for the composites. The composites were prepared by using an injection molding. Rheological, morphological and mechanical properties of PP and PP composites with and without NR or EPDM were studied. Adding NR or EPDM to PP composites, a significant increase in the impact strength and elongation at break is observed in the PP composite with rubber content more than 20% by weight. However, the tensile strength and Young’s modulus of the PP composites decrease with increasing rubber contents. Nevertheless, the tensile strength and Young’s modulus of the composites with rubber contents up to 10% are still higher than those of PP. Moreover, comparisons between NR and EPDM rubber on the mechanical properties of the PP composites were elucidated. The PP composites with EPDM rubber show slightly higher tensile strength and impact strength than the PP composites with NR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号