首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper a novel method for simulating unsteady incompressible viscous flow over a moving boundary is described. The numerical model is based on a 2D Navier–Stokes incompressible flow in artificial compressibility formulation with Arbitrary Lagrangian Eulerian approach for moving grid and dual time stepping approach for time accurate discretization. A higher order unstructured finite volume scheme, based on a Harten Lax and van Leer with Contact (HLLC) type Riemann solver for convective fluxes, developed for steady incompressible flow in artificial compressibility formulation by Mandal and Iyer (AIAA paper 2009-3541), is extended to solve unsteady flows over moving boundary. Viscous fluxes are discretized in a central differencing manner based on Coirier’s diamond path. An algorithm based on interpolation with radial basis functions is used for grid movements. The present numerical scheme is validated for an unsteady channel flow with a moving indentation. The present numerical results are found to agree well with experimental results reported in literature.  相似文献   

2.
《Computers & Structures》2007,85(11-14):749-762
The newly developed immersed object method (IOM) [Tai CH, Zhao Y, Liew KM. Parallel computation of unsteady incompressible viscous flows around moving rigid bodies using an immersed object method with overlapping grids. J Comput Phys 2005; 207(1): 151–72] is extended for 3D unsteady flow simulation with fluid–structure interaction (FSI), which is made possible by combining it with a parallel unstructured multigrid Navier–Stokes solver using a matrix-free implicit dual time stepping and finite volume method [Tai CH, Zhao Y, Liew KM. Parallel computation of unsteady three-dimensional incompressible viscous flow using an unstructured multigrid method. In: The second M.I.T. conference on computational fluid and solid mechanics, June 17–20, MIT, Cambridge, MA 02139, USA, 2003; Tai CH, Zhao Y, Liew KM. Parallel computation of unsteady three-dimensional incompressible viscous flow using an unstructured multigrid method, Special issue on “Preconditioning methods: algorithms, applications and software environments. Comput Struct 2004; 82(28): 2425–36]. This uniquely combined method is then employed to perform detailed study of 3D unsteady flows with complex FSI. In the IOM, a body force term F is introduced into the momentum equations during the artificial compressibility (AC) sub-iterations so that a desired velocity distribution V0 can be obtained on and within the object boundary, which needs not coincide with the grid, by adopting the direct forcing method. An object mesh is immersed into the flow domain to define the boundary of the object. The advantage of this is that bodies of almost arbitrary shapes can be added without grid restructuring, a procedure which is often time-consuming and computationally expensive. It has enabled us to perform complex and detailed 3D unsteady blood flow and blood–leaflets interaction in a mechanical heart valve (MHV) under physiological conditions.  相似文献   

3.
This paper presents two efficient methods for spatial flows calculations. In order to simulate of incompressible viscous flows, a second-order accurate scheme with an incomplete LU decomposed implicit operator is developed. The scheme is based on the method of artificial compressibility and Roe flux-difference splitting technique for the convective terms. The numerical algorithm can be used to compute both steady-state and time-dependent flow problems. The second method is developed for modeling of stationary compressible inviscid flows. This numerical algorithm is based on a simple flux-difference splitting into physical processes method and combines a multi level grid technology with a convergence acceleration procedure for internal iterations. The capabilities of the methods are illustrated by computations of steady-state flow in a rotary pump, unsteady flow over a circular cylinder and stationary subsonic flow over an ellipsoid.  相似文献   

4.
A hybrid dynamic grid generation technique for two-dimensional (2D) morphing bodies and a block lower-upper symmetric Gauss-Seidel (BLU-SGS) implicit dual-time-stepping method for unsteady incompressible flows are presented for external bio-fluid simulations. To discretize the complicated computational domain around 2D morphing configurations such as fishes and insect/bird wings, the initial grids are generated by a hybrid grid strategy firstly. Body-fitted quadrilateral (quad) grids are generated first near solid bodies. An adaptive Cartesian mesh is then generated to cover the entire computational domain. Cartesian cells which overlap the quad grids are removed from the computational domain, and a gap is produced between the quad grids and the adaptive Cartesian grid. Finally triangular grids are used to fill this gap. During the unsteady movement of morphing bodies, the dynamic grids are generated by a coupling strategy of the interpolation method based on ‘Delaunay graph’ and local remeshing technique. With the motion of moving/morphing bodies, the grids are deformed according to the motion of morphing body boundaries firstly with the interpolation strategy based on ‘Delaunay graph’ proposed by Liu and Qin. Then the quality of deformed grids is checked. If the grids become too skewed, or even intersect each other, the grids are regenerated locally. After the local remeshing, the flow solution is interpolated from the old to the new grid. Based on the hybrid dynamic grid technique, an efficient implicit finite volume solver is set up also to solve the unsteady incompressible flows for external bio-fluid dynamics. The fully implicit equation is solved using a dual-time-stepping approach, coupling with the artificial compressibility method (ACM) for incompressible flows. In order to accelerate the convergence history in each sub-iteration, a block lower-upper symmetric Gauss-Seidel implicit method is introduced also into the solver. The hybrid dynamic grid generator is tested by a group of cases of morphing bodies, while the implicit unsteady solver is validated by typical unsteady incompressible flow case, and the results demonstrate the accuracy and efficiency of present solver. Finally, some applications for fish swimming and insect wing flapping are carried out to demonstrate the ability for 2D external bio-fluid simulations.  相似文献   

5.
Jun Cao 《Computers & Fluids》2005,34(8):972-990
The main goal of this paper is to study adaptive mesh techniques, using a posteriori error estimates, for the finite element solution of the Navier-Stokes equations modeling steady and unsteady flows of an incompressible viscous fluid. Among existing operator splitting techniques, the θ-scheme is used for time integration of the Navier-Stokes equations. Then, a posteriori error estimates, based on the solution of a local system for each triangular element, are presented in the framework of the generalized incompressible Stokes problem, followed by its practical application to the case of incompressible Navier-Stokes problem. Hierarchical mesh adaptive techniques are developed in response to the a posteriori error estimation. Numerical simulations of viscous flows associated with selected geometries are performed and discussed to demonstrate the accuracy and efficiency of our methodology.  相似文献   

6.
In this paper, a Cartesian grid method with cut cell approach has been developed to simulate two dimensional unsteady viscous incompressible flows with rigid bodies of arbitrary shape. A collocated finite volume method with nominally second-order accurate schemes in space is used for discretization. A pressure-free projection method is used to solve the equations governing incompressible flows. For fixed-body problems, the Adams-Bashforth scheme is employed for the advection terms and the Crank-Nicholson scheme for the diffusion terms. For moving-body problems, the fully implicit scheme is employed for both terms. The present cut cell approach with cell merging process ensures global mass/momentum conservation and avoid exceptionally small size of control volume which causes impractical time step size. The cell merging process not only keeps the shape resolution as good as before merging, but also makes both the location of cut face center and the construction of interpolation stencil easy and systematic, hence enables the straightforward extension to three dimensional space in the future. Various test examples, including a moving-body problem, were computed and validated against previous simulations or experiments to prove the accuracy and effectiveness of the present method. The observed order of accuracy in the spatial discretization is superlinear.  相似文献   

7.
The development and validation of a parallel unstructured tetrahedral non-nested multigrid (MG) method for simulation of unsteady 3D incompressible viscous flow is presented. The Navier-Stokes solver is based on the artificial compressibility method (ACM) and a higher-order characteristics-based finite-volume scheme on unstructured MG. Unsteady flow is calculated with an implicit dual time stepping scheme. The parallelization of the solver is achieved by a MG domain decomposition approach (MG-DD), using the Single Program Multiple Data (SPMD) programming paradigm. The Message-Passing Interface (MPI) Library is used for communication of data and loop arrays are decomposed using the OpenMP standard. The parallel codes using single grid and MG are used to simulate steady and unsteady incompressible viscous flows for a 3D lid-driven cavity flow for validation and performance evaluation purposes. The speedups and efficiencies obtained by both the parallel single grid and MG solvers are reasonably good for all test cases, using up to 32 processors on the SGI Origin 3400. The parallel results obtained agree well with those of serial solvers and with numerical solutions obtained by other researchers, as well as experimental measurements.  相似文献   

8.
This paper deals with the numerical solution of Newtonian and non-Newtonian flows with biomedical applications. The flows are supposed to be laminar, viscous, incompressible and steady or unsteady with prescribed pressure variation at the outlet. The model used for non-Newtonian fluids is a variant of power law. Governing equations in this model are incompressible Navier–Stokes equations. For numerical solution we use artificial compressibility method with three stage Runge–Kutta method and finite volume method in cell centered formulation for discretization of space derivatives. The following cases of flows are solved: steady Newtonian and non-Newtonian flow through a bypass connected to main channel in 2D, steady Newtonian flow in angular bypass in 3D and unsteady non-Newtonian flow through bypass in 2D. Some 2D and 3D results that could have application in the area of biomedicine are presented.  相似文献   

9.
Numerical manifold method (NMM) application to direct numerical solution for unsteady incompressible viscous flow Navier-Stokes (N-S) equations was discussed in this paper, and numerical manifold schemes for N-S equations were derived based on Galerkin weighted residuals method as well. Mixed covers with linear polynomial function for velocity and constant function for pressure was employed in finite element cover system. The patch test demonstrated that mixed covers manifold elements meet the stability conditions and can be applied to solve N-S equations coupled velocity and pressure variables directly. The numerical schemes with mixed covers have also been proved to be unconditionally stable. As applications, mixed cover 4-node rectangular manifold element has been used to simulate the unsteady incompressible viscous flow in typical driven cavity and flow around a square cylinder in a horizontal channel. High accurate results obtained from much less calculational variables and very large time steps are in very good agreement with the compact finite difference solutions from very fine element meshes and very less time steps in references. Numerical tests illustrate that NMM is an effective and high order accurate numerical method for unsteady incompressible viscous flow N-S equations.  相似文献   

10.
Diffuse interface method is becoming a more and more popular approach for simulation of multiphase flows. As compared to other solvers, it is easy to implement and can keep conservation of mass and momentum. In the diffuse interface method, the interface is not considered as a sharp discontinuity. Instead, it treats the interface as a diffuse layer with a small thickness. This treatment is similar to the shock-capturing method. To have a fine resolution around the interface, one has to use very fine mesh in the computational domain. As a consequence, a large computational effort will be needed. To improve the computational efficiency, this paper incorporates the efficient 5-points stencil adaptive algorithm [1] into the diffuse interface method with local refinement around the interface and then applies the developed method to simulate two-dimensional incompressible multiphase flows. Three cases are chosen to test the performance of the method, including Young-Laplace law for a 2D drop, drop deformation in the shear flow and viscous finger formation. The method is well validated through the comparison with theoretical analysis or earlier results available in the literature. It is shown that the method can obtain accurate results at much lower cost, even for problems with moving contact lines. The improvement of computational efficiency by the stencil adaptive algorithm is demonstrated obviously.  相似文献   

11.
The problem under consideration is that of a suddenly accelerated semi-infinite flat plate in an incompressible viscous fluid. The present analysis is based upon the use of finite elements to idealize the flow over the plate and solving the nonlinear unsteady boundary layer equation by Galerkin's procedure and the results are compared with those obtained previously using a mixed explicit-implicit finite difference scheme. An average number of three iterations are needed to obtain a solution within a maximum tolerance between interates less than 0.01%. The method has successfully demonstrated the exponential decay of the velocity at large times, which has been reported by previous investigators. The transition region of the flow is terminated to reach Blasius state, when the plate has moved a distance equal to six times the distance from the station into consideration to the leading edge of the plate. The methods shows excellent accuracy in dealing with the nonlinear equation of the unsteady viscous flow.  相似文献   

12.
We discuss the use of a posteriori error estimates for high-order finite element methods during simulation of the flow of incompressible viscous fluids. The correlation between the error estimator and actual error is used as a criterion for the error analysis efficiency. We show how to use the error estimator for mesh optimization which improves computational efficiency for both steady-state and unsteady flows. The method is applied to two-dimensional problems with known analytical solutions (Jeffrey-Hamel flow) and more complex flows around a body, both in a channel and in an open domain.  相似文献   

13.
In this paper, a new methodology has been proposed to solve two-dimensional (2D) Navier-Stokes (N-S) equations representing incompressible viscous fluid flows on irregular geometries. It is based on second order compact finite difference discretization of the fourth order streamfunction equation on computational plane. The important advantage of this formulation is not only to overcome the difficulties existing in the velocity-pressure and streamfunction-vorticity formulations, but also for being applicable to complex geometries beyond rectangular. We first apply the proposed scheme to a problem having analytical solution and then to the well-studied benchmark problem (problem of lid-driven cavity flow) in viscous fluid flow. Finally, we demonstrate the robustness of our proposed scheme on flow in a complex domain (e.g. constricted channel and dilated channel). It is seen to efficiently capture steady state solutions of the N-S equations with Dirichlet as well as Neumann boundary conditions. In addition to this, it captures viscous flows involving free and wall bounded shear layers which invariably contain spatial scale variations. Estimates of the error incurred show that the results are very accurate on a coarser grid. The results obtained using this scheme are in excellent agreement with analytical and numerical results whenever available and they clearly demonstrate the superior scale resolution of the proposed scheme.  相似文献   

14.
An adaptive finite element algorithm is described for the stable solution of three-dimensional free-surface-flow problems based primarily on the use of node movement. The algorithm also includes a discrete remeshing procedure which enhances its accuracy and robustness. The spatial discretisation allows an isoparametric piecewise-quadratic approximation of the domain geometry for accurate resolution of the curved free surface. The technique is illustrated through an implementation for surface-tension-dominated viscous flows modelled in terms of the Stokes equations with suitable boundary conditions on the deforming free surface. Two three-dimensional test problems are used to demonstrate the performance of the method: a liquid bridge problem and the formation of a fluid droplet.  相似文献   

15.
《Computers & Fluids》2005,34(4-5):419-441
We propose a new third-order multidimensional upwind algorithm for the solution of the flow equations on tetrahedral cells unstructured grids. This algorithm has a compact stencil (cell-based computations) and uses a finite element idea when computing the residual over the cell to achieve its third-order (spatial) accuracy. The construction of the new scheme is presented. The asymptotic accuracy for steady or unsteady, inviscid or viscous flow situations is proved using numerical experiments. The new high-order discretization proves to have excellent parallel scalability. Our studies show the advantages of the new compact third-order scheme when compared with the classical second-order multidimensional upwind schemes.  相似文献   

16.
A fourth order finite difference method is presented for the 2D unsteady viscous incompressible Boussinesq equations in vorticity-stream function formulation. The method is especially suitable for moderate to large Reynolds number flows. The momentum equation is discretized by a compact fourth order scheme with the no-slip boundary condition enforced using a local vorticity boundary condition. Fourth order long-stencil discretizations are used for the temperature transport equation with one-sided extrapolation applied near the boundary. The time stepping scheme for both equations is classical fourth order Runge–Kutta. The method is highly efficient. The main computation consists of the solution of two Poisson-like equations at each Runge–Kutta time stage for which standard FFT based fast Poisson solvers are used. An example of Lorenz flow is presented, in which the full fourth order accuracy is checked. The numerical simulation of a strong shear flow induced by a temperature jump, is resolved by two perfectly matching resolutions. Additionally, we present benchmark quality simulations of a differentially-heated cavity problem. This flow was the focus of a special session at the first MIT conference on Computational Fluid and Solid Mechanics in June 2001.  相似文献   

17.
A parallel multilevel preconditioner based on domain decomposition and fictitious domain methods has been presented for the solution of the Poisson equation in complicated geometries. Rectangular blocks with matching grids on interfaces on a structured rectangular mesh have been used for the decomposition of the problem domain. Sloping sides or curved boundary surfaces are approximated using stepwise surfaces formed by the grid cells. A seven-point stencil based on the central difference scheme has been used for the discretization of the Laplacian for both interior and boundary grid points, and this results in a symmetric linear algebraic system for any type of boundary condition. The preconditioned conjugate gradient method has been used for the solution of this symmetric system. The multilevel preconditioner for the CG is based on a V-cycle multigrid applied to the Poisson equation on a fictitious domain formed by the union of the rectangular blocks used for the domain decomposition. Numerical results are presented for two typical Poisson problems in complicated geometries—one related to heat conduction, and the other one arising from the LES/DNS of incompressible turbulent flow over a packed array of spheres. These results clearly show the efficiency and robustness of the proposed approach.  相似文献   

18.
A parallel numerical solution procedure for unsteady incompressible flow is developed for simulating the dynamics of flapping flight. A collocated finite volume multiblock approach in a general curvilinear coordinate is used with Cartesian velocities and pressure as dependent variables. The Navier-Stokes equations are solved using a fractional-step algorithm. The dynamic grid algorithm is implemented by satisfying the space conservation law by computing the grid velocities in terms of the volume swept by the faces. The dynamic movement of grid in a multiblock approach is achieved by using a combination of spring analogy and Trans-Finite Interpolation. The spring analogy is used to compute the displacement of block corners, after which Trans-Finite Interpolation is applied independently on each computational block. The performance of the code is validated in forced transverse oscillations of a cylinder in cross-flow, a heaving airfoil, and hovering of a fruitfly. Finally, the unsteady aerodynamics of flapping flight at Re = 10,000 relevant to the development of Micro Air Vehicles is analyzed for forward flight. The results show the capability of the solver in predicting unsteady aerodynamics characterized by complex boundary movements.  相似文献   

19.
This work is concerned with the analysis of time integration procedures for the stabilised finite element formulation of unsteady incompressible fluid flows governed by the Navier–Stokes equations. The stabilisation technique is combined with several different implicit time integration procedures including both finite difference and finite element schemes. Particular attention is given to the generalised-α method and the linear discontinuous in time finite element scheme. The time integration schemes are first applied to two model problems, represented by a first order differential equation in time and the one dimensional advection–diffusion equation, and subjected to a detailed mathematical analysis based on the Fourier series expansion. In order to establish the accuracy and efficiency of the time integration schemes for the Navier–Stokes equations, a detailed computational study is performed of two standard numerical examples: unsteady flow around a cylinder and flow across a backward facing step. It is concluded that the semi-discrete generalised-α method provides a viable alternative to the more sophisticated and expensive space–time methods for simulations of unsteady flows of incompressible fluids governed by the Navier–Stokes equations.  相似文献   

20.
This paper presents a computational scheme suitable for analyzing viscous incompressible flows in generalized curvilinear coordinate system. The scheme is based on finite volume algorithm with an overlapping staggered grid. The pseudo-diffusive terms arising from the coordinate transformation are treated as source terms. The system of nonlinear algebraic equations is solved by a semi-implicit procedure based upon line-relaxation and a generalization of Patankar's pressure correction algorithm. Examples of the application of the algorithm to flow in convergent channels, developing flow in a U-bend, and flow past backward facing step, are given. In addition, the case of flow past backward facing step is analyzed in detail, and the computed flowfields are found to be in close agreement with previous experimental and numerical results for expansion ratio (defined as the ratio of step height to channel height) of 0.5. The results are summarized in the form of a correlation relating the primary separation length, Reynolds number and expansion ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号