首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The forward speed diffraction problem for a surface ship is analyzed numerically, using a RANS approach with a single-phase level set method to compute the free surface and a blended k-ε/k-ω model for the turbulent viscosity. Simulations were run for a DTMB 5512 model under head incident waves at two speeds and two wavelengths with the same wave amplitude (a = 0.006L, with L the ship length). The medium speed case (Fr = 0.28) with long wavelength incident waves (λ = 1.5L) behaves linearly and has been extensively compared against available experimental data for resistance and heave forces and pitching moment, unsteady free surface elevations, and unsteady velocity fields at the nominal wake plane (x/L = 0.935). Quantitative verification and validation was performed for this case by running three grids and three time steps with refinement ratio of and the flow field analyzed in detail. The behavior of the boundary layer is analyzed to explain the origin of large first harmonic amplitudes on the axial velocity observed both experimentally and numerically. The high speed case (Fr = 0.41) with short wavelength incident waves (λ = 0.5L) exhibits non-linear behavior on the forces and moment with a strong second harmonic component and an unsteady breaking bow wave. The second harmonic has been reproduced by the CFD computations and the breaking wave predicted. Analysis of the flow indicates that the breaking wave could be responsible for the non-linear behavior on the forces and moment.  相似文献   

2.
This paper aims at presenting the most resolved solutions to date for the ship forward speed diffraction and pitch and heave problems, and discuss the method that enables these computations. Large-scale DES computations (60-115 million grid points, 276-500 processors) of ship hydrodynamics problems are presented for the DTMB model 5512 surface combatant. The forward speed diffraction problem is studied at Fr = 0.28 with waves of amplitude a = 0.006 and wavelength λ=1.5, with the ship static allowing the overset assembly to be a pre-processing step. In the pitch and heave problem the ship faces head waves at Fr = 0.41 with waves of amplitude a = 0.006 and wavelength λ=1.5, with the ship is allowed to pitch and heave, thus requiring dynamic overset grid processing. The code CFDShip-Iowa version 4 and the overset assembly code Suggar were modified to carry out some large scale simulations of free surface ship hydrodynamics. These modifications were focused on reducing the memory requirement and optimizing the per-processor and parallel performance at the implementation and algorithmic levels, plus the addition of a lagged mode for the overset domain connectivity computation. The simulation results show very significant improvements in the local flow and free surface results, but minor in forces and moments when compared with previous URANS computations performed with grids with about three million points.  相似文献   

3.
This paper focuses on the energy budget in the calculation of unsteady free-surface flows on moving grids with and without using the ‘arbitrary Lagrangian-Eulerian’ (ALE) formulation or hydrostatic-pressure assumption. The numerical tool is an in-house general-purpose solver for the unsteady, incompressible and homogeneous Navier-Stokes equations in a Cartesian domain. An explicit fractional-step method and co-located finite-volume method are used for the second-order accurate integrations in time and space. The test cases are nonlinear and linear irrotational standing waves, which allow to characterise the impacts of an ALE or Eulerian formulation with moving grids by comparison with the anticipated energy conservation. The study is also extended to viscous waves for varying wave-height-to-water-depth and basin aspect ratios. The Eulerian viewpoint produces marked overdamping as early as in the first wave period for the range of relative wave heights η0/h > 0.01, where η0 is the wave semi-amplitude and h is the undisturbed water depth. The hydrostatic calculations misrepresent the evolution of the potential and kinetic energies for h/L > 0.1, where L is the basin length, with spurious modes arising from different initial conditions.  相似文献   

4.
This paper describes and analyzes a series of nearly 90 CFD test cases performed as a contribution to the second Drag Prediction Workshop, held in Orlando, Florida in June 2003. Two configurations are included: DLR-F6 wing-body and wing-body-nacelle-pylon. The ability of CFD to predict the drag, lift, and pitching moment from experiment--including the “delta” arising from the addition of the nacelle and pylon--is assessed. In general, at a fixed angle of attack CFD overpredicts lift, but predicts the ΔCL reasonably well. At low lift levels (CL < 0.3), ΔCD is 20-30 drag counts (30-45%) high. At the target lift coefficient of CL  =  0.5, ΔCD is overpredicted by between 11 and 16 counts. However, the primary contribution of this paper is not so much the assessment of CFD against experiment, but rather a detailed assessment and analysis of CFD variation. The series of test cases are designed to determine the sensitivity/variability of CFD to a variety of factors, including grid, turbulence model, transition, code, and viscous model. Using medium-level grids (6-11 million points) at the target lift coefficient, the maximum variation in drag due to different grids is 5-11 drag counts, due to code is 5-10 counts, due to turbulence model is 7-15 counts, due to transition is 10-11 counts, and due to viscous model is 4-5 counts. Other specific variations are described in the paper.  相似文献   

5.
Mental poker protocols are considered to be computationally and communicationally consuming. A secure and fast mental poker protocol was proposed by Wang and Wei (2009) [26]. The cost of communication (total length of message) can be considered as feasible, but is still relatively expensive for networks with lower bandwidths. A shuffle requires 64 MB of data transmission for a typical setting (9 players, 52 cards, 1024 bit keys, and security parameter L = 100). The most communicationally consuming part of Wang and Wei’s protocol is the shuffle verification protocol SV.In this paper, we propose a new method to verify the integrity of the shuffle, namely, NewSV which can be used as a drop-in replacement for SV. NewSV is slower than SV. The benefit of using NewSV is that the communication cost can be greatly reduced. Using the same settings, if NewSV is used instead of SV, then 70% of the communication cost can be saved. A shuffle requires only 20 MB of data transmission for L = 100. The computational overhead is 7-2% for security parameter L = 30-100.This technique can be applied to a similar mental poker protocol proposed by Castella-Roca (2004) [7]. The Castella-Roca’s shuffle requires 154 MB of data transmission for L = 100. By using NewSV, 87% of the communication cost can be reduced so that only 20 MB of data transmission is required. The computational overhead is also 7-2% for L = 30-100.  相似文献   

6.
What is the most effective way to incorporate self-explanation into an educational game? In Experiment 1, students who played a 10-level computer game about electrical circuits performed better on an embedded transfer test (i.e., level 10) if they were required to select the reason for each move from a list on levels 1–9 (selection self-explanation) than if they were not required to engage in self-explanation (= 1.20). In Experiment 2, the same pattern of results was replicated (= 0.71), but students who were required to type in their reason for each move on levels 1–9 (generation self-explanation) did not perform any better than those who were not required to engage in self-explanation (= −0.06). Overall, asking students to select a reason from a list fosters some degree of reflection while not overly disrupting the flow of the game.  相似文献   

7.
In this paper the possibility of predicting salt concentrations in soils from measured reflectance spectra is studied using partial least squares regression (PLSR) and artificial neural network (ANN). Performance of these two adaptive methods has been compared in order to examine linear and non-linear relationship between soil reflectance and salt concentration.Experiment-, field- and image-scale data sets were prepared consisting of soil EC measurements (dependent variable) and their corresponding reflectance spectra (independent variables). For each data set, PLSR and ANN predictive models of soil salinity were developed based on soil reflectance data. The predictive accuracies of PLSR and ANN models were assessed against independent validation data sets not included in the calibration or training phase.The results of PLSR analyses suggest that an accurate to good prediction of EC can be made based on models developed from experiment-scale data (R2 > 0.81 and RPD (ratio of prediction to deviation) > 2.1) for soil samples salinized by bischofite and epsomite minerals. For field-scale data sets, the PLSR predictive models provided approximate quantitative EC estimations (R2 = 0.8 and RPD = 2.2) for grids 1 and 6 and poor estimations for grids 2, 3, 4 and 5. The salinity predictions from image-scale data sets by PLSR models were very reliable to good (R2 between 0.86 and 0.94 and RPD values between 2.6 and 4.1) except for sub-image 2 (R2 = 0.61 and RPD = 1.2).The ANN models from experiment-scale data set revealed similar network performances for training, validation and test data sets indicating a good network generalization for samples salinized by bischofite and epsomite minerals. The RPD and the R2 between reference measurements and ANN outputs of theses models suggest an accurate to good prediction of soil salinity (R2 > 0.92 and RPD > 2.3). For the field-scale data set, prediction accuracy is relatively poor (0.69 > R2 > 0.42). The ANN predictive models estimating soil salinity from image-scale data sets indicate a good prediction (R2 > 0.86 and RPD > 2.5) except for sub-image 2 (R2 = 0.6 and RPD = 1.2).The results of this study show that both methods have a great potential for estimating and mapping soil salinity. Performance indexes from both methods suggest large similarity between the two approaches with PLSR advantages. This indicates that the relation between soil salinity and soil reflectance can be approximated by a linear function.  相似文献   

8.
The development of a preconcentrating sensor based on 6-O-palmitoyl-l-ascorbic acid (PAA)-modified graphite (GRA) electrodes for the determination of uranium is described. PAA, a water insoluble compound of ascorbic acid, was immobilized onto the surface of the GRA electrodes through physical adsorption from acetone solutions. Uranium was accumulated by heterogeneous complexation (10 min, in 0.1 M H3BO3, pH 4.3) and then, it was reduced by means of a differential pulse voltammetric scan in 0.1 M H3BO3, pH 3.4. Alternatively, the performance of both preconcentration and voltammetric steps in a single run, at 0.1 M H3BO3, pH 3.65, was also examined; however, in this case the observed current signals were lower by 30%. The experimental variables were investigated and under the selected conditions, a linear calibration curve in the range 2.7-67.5 μg L−1 U(VI) was constructed (r2 = 0.9981). The 3σ limit of detection and the relative standard deviation of the method were 1.8 μg L−1 U(VI) and 8% (n = 5, 20 μg L−1 U(VI), preconcentration time 10 min), respectively. By increasing the preconcentration time to 30 min, a limit of detection as low as 0.26 μg L−1 U(VI) can be achieved. The effect of potential interferences was also examined. The accuracy of the method was established by recovery studies in inoculated tap and lake water samples. A simple and fast procedure based on filtering of the sample through a C-18 microcolumn was successfully used to remove the organic matter from the lake water samples.  相似文献   

9.
A micro/nanoparticle (μ-NP) bismuth film electrode (BiFE) has been developed for the determination of lead and cadmium by anodic stripping voltammetry (ASV) and trace levels of chromium by adsorptive stripping voltammetry (AdSV). Chromium was detected in a flow cell. Bismuth was electrodeposited on a hydrated aluminum oxide template, which was previously coated on a glassy-carbon (GC) electrode. Then, the template was selectively removed by soaking the electrode in a 0.1 M NaOH solution for 30 min, leaving a dispersed bismuth film covering the electrode surface; such electrodeposits had a particulate appearance, which was observed by scanning electron microscopy (SEM). The voltammetric analyses from a chromium solution on a μ-NPs/BiFE provided a limit of detection (LOD) equal to 0.12 ng L−1 (n = 6) and a slope of 0.27 μC/ng L−1 (R2 = 0.9903). The signals registered were more than 50 times higher than the peaks obtained from a conventional BiFE. The analysis of aqueous solutions of Cd and Pb gave also lower LOD and higher sensitivity against the conventional BiFe experiments.  相似文献   

10.
In this paper, we study the m-pancycle-connectivity of a WK-Recursive network. We show that a WK-Recursive network with amplitude W and level L is strictly (5 × 2L−1 − 2)-pancycle-connected for W ? 3. That is, each pair of vertices in a WK-recursive network with amplitude greater than or equal to 3 resides in a common cycle of every length ranging from 5 × 2L−1 − 2 to N, where N is the size of the interconnection network; and the value 5 × 2L−1 − 2 reaches the lower bound of the problem.  相似文献   

11.
In Kingston and Svalbe [1], a generalized finite Radon transform (FRT) that applied to square arrays of arbitrary size N × N was defined and the Fourier slice theorem was established for the FRT. Kingston and Svalbe asserted that “the original definition by Matúš and Flusser was restricted to apply only to square arrays of prime size,” and “Hsung, Lun and Siu developed an FRT that also applied to dyadic square arrays,” and “Kingston further extended this to define an FRT that applies to prime-adic arrays”. It should be said that the presented generalized FRT together with the above FRT definitions repeated the known concept of tensor representation, or tensor transform of images of size N × N which was published earlier by Artyom Grigoryan in 1984-1991 in the USSR. The above mentioned “Fourier slice theorem” repeated the known tensor transform-based algorithm of 2-D DFT [5-11], which was developed for any order N1 × N2 of the transformation, including the cases of N × N, when N = 2r, (r > 1), and N = Lr, (r ≥ 1), where L is an odd prime. The problem of “over-representation” of the two-dimensional discrete Fourier transform in tensor representation was also solved by means of the paired representation in Grigoryan [6-9].  相似文献   

12.
Steady two-dimensional turbulent natural convection between inclined isothermal plates has been investigated numerically. Validations for the present computational procedure were carried out utilizing experimental and numerical data published in the literature. The comparisons with published data indicate very good agreement. The present calculations were conducted for a single aspect ratio, L/b = 24, over the range of modified Rayleigh number Ra′ of 104 ? Ra′ ? 106 and angle of inclination 0° ? θ ? 90°. The results indicate that the channel overall average Nusselt number is reduced, the rate of reduction increases as the inclination angle is increased and that the overall average Nusselt number at different inclination angles can be presented by a single correlation if plotted versus the product of the modified Rayleigh number and (Cos θ)0.5. For the case of horizontal channel (θ = 90°), the results indicate that the local Nusselt number along the lower wall is much higher than that along the upper wall.  相似文献   

13.
4-Nonylphenol (4-NP) was reported to affect the health of wildlife and humans through altering endocrine function. A novel electrochemical sensor for sensitive and fast determination of 4-NP was developed. Titanium oxide (TiO2) nanoparticles and gold nanoparticles (AuNPs) were introduced for the enhancement of electron conduction and sensitivity. 4-NP-imprinted functionalized AuNPs composites with specific binding sites for 4-NP was modified on electrode. The resulting electrodes were characterized by cyclic voltammetry (CV). Rebinding experiments were carried out to determine the specific binding capacity and selective recognition. The linear range was over the range from 4.80 × 10−4 to 9.50 × 10−7 mol L−1, with the detection limit of 3.20 × 10−7 mol L−1 (S/N = 3). The sensor was successfully employed to detect 4-NP in real samples.  相似文献   

14.
In this paper, it is shown that optimal Z_2 lattice vector quantization can be implemented using radial companding technique. We derive the optimal vector compressor function for radial compander of memoryless Gaussian source. This result is obtained by taking into consideration the source geometry and by establishing the relation between the volumes and the point densities at the compressor input and compressor output. We also derive the linearized model - the piecewise linear compander. Its performance closely approaches that of optimal vector quantization. For example, for R = 8 bits/dimension and L = 16 regions, the difference between corresponding distortions is about 0.037 dB, while the asymptotic performances are identical.  相似文献   

15.
Near real-time data from the MODIS satellite sensor was used to detect and trace a harmful algal bloom (HAB), or red tide, in SW Florida coastal waters from October to December 2004. MODIS fluorescence line height (FLH in W m− 2 μm− 1 sr− 1) data showed the highest correlation with near-concurrent in situ chlorophyll-a concentration (Chl in mg m− 3). For Chl ranging between 0.4 to 4 mg m− 3 the ratio between MODIS FLH and in situ Chl is about 0.1 W m− 2 μm− 1 sr− 1 per mg m− 3 chlorophyll (Chl = 1.255 (FLH × 10)0.86, r = 0.92, n = 77). In contrast, the band-ratio chlorophyll product of either MODIS or SeaWiFS in this complex coastal environment provided false information. Errors in the satellite Chl data can be both negative and positive (3-15 times higher than in situ Chl) and these data are often inconsistent either spatially or temporally, due to interferences of other water constituents. The red tide that formed from November to December 2004 off SW Florida was revealed by MODIS FLH imagery, and was confirmed by field sampling to contain medium (104 to 105 cells L− 1) to high (> 105 cells L− 1) concentrations of the toxic dinoflagellate Karenia brevis. The FLH imagery also showed that the bloom started in mid-October south of Charlotte Harbor, and that it developed and moved to the south and southwest in the subsequent weeks. Despite some artifacts in the data and uncertainty caused by factors such as unknown fluorescence efficiency, our results show that the MODIS FLH data provide an unprecedented tool for research and managers to study and monitor algal blooms in coastal environments.  相似文献   

16.
A new acoustic wave sensor to detect and quantify fluoride, one of the most hydrophilic anions, is proposed. Meso-octamethylcalix[4]pyrrole (OMCP) and seven of its derivatives were evaluated as piezoelectric quartz crystal coatings. Some of these sensors experienced appreciable coating leaching under a water flow, while others did show a very small sensitivity to fluoride. As the OMCP-naphthoquinone sensor was very sensitive to fluoride and did not lose a significant amount (α = 0.05) of coating during eight weeks, it was selected among all the others. A piezoelectric crystal coated with an amount of OMCP-naphthoquinone that produced a frequency decrease of 22 kHz showed a linear calibration range that extended up to 80 mg L−1, within which sensitivity to fluoride was 0.45 Hz L mg−1, and was able to detect fluoride at the concentration of 3.66 mg L−1. This sensor was used to determine fluoride in commercial fluoride tablets, and the result found was not statistically different (α = 0.05) from the value provided by the manufacturer.  相似文献   

17.
A numerical method for the solution of unsteady Navier-Stokes equations has been employed in conjunction with an interface-preserving level-set method for the simulation of greenwater effect on offshore structures and ships. In this method, the free surface flows are modeled as immiscible air-water two-phase flows and the free surface itself is represented by the zero level-set function. The Navier-Stokes equations for both the water and air flows are formulated in moving curvilinear coordinate system and discretized using the finite-analytic method on a non-staggered multi-block grid system. Large eddy simulation (LES) approach is used with Smagorinsky model to account for the effects of turbulence induced by violent free surface motions. A chimera domain decomposition approach is implemented using overlapping, embedding, or matching grids to facilitate the simulation of complex flow around practical configurations. The overset grid system also greatly simplified the simulation of arbitrary translational and rotational motions among various computational blocks. Calculations were performed first for dam-breaking flow and free jet problems involving violent free surface motions. The level-set Navier-Stokes method was then employed for the simulation of slamming of a hemisphere, greenwater on offshore structure and ships, and wet deck slamming of an X-Craft in pitch and heave motions. The numerical results clearly demonstrated the capability of the level-set method to deal with violent free surface flows involving breaking waves, water droplets, trapped air bubbles, and wave-current-body interactions.  相似文献   

18.
A methodology for the assessment of fruit quality in crops subjected to different irrigation regimes is presented. High spatial resolution multispectral and thermal airborne imagery were used to monitor crown temperature and the Photochemical Reflectance Index (PRI) over three commercial orchards comprising peach, nectarine and orange fruit trees during 2008. Irrigation regimes included sustained and regulated deficit irrigation strategies, leading to high variability of fruit quality at harvest. Stem water potential was used to monitor individual tree water status on each study site. Leaf samples were collected for destructive sampling of xanthophyll pigments to assess the relationship between the xanthophyll epoxidation state (EPS) and PRI at leaf and airborne-canopy level. At harvest, fruit size, Total Soluble Solids (TSS) and Tritatable Acidity (TA) were measured to characterize fruit quality. A statistically significant relationship between EPS and PRI was found at the leaf (r2 = 0.81) and canopy level (r2 = 0.41). Airborne-derived crown PRI calculated from the imagery acquired during the fruit growth was related to the ratio of the total soluble solids normalized by the tritatable acidity (TSS/TA), an indicator of fruit quality measured on the same trees, yielding a coefficient of determination of r2 = 0.50. The relationship between the integral of PRI time-series and TSS/TA yielded a coefficient of determination of r2 = 0.72 (peach) and r2 = 0.61 (nectarines). On the contrary, the relation between TSS/TA and the time-series of crown thermal imagery was very weak (r2 = 0.21 and 0.25 respectively). These results suggest that a physiological remote sensing indicator related to photosynthesis, such as PRI, is more appropriate for fruit quality assessment than crown temperature, the established method of water stress detection, which is more related to crown transpiration. A radiative transfer modelling study was conducted to assess the potential validity of this methodology for fruit quality assessment when using medium spatial resolution imagery. The analysis shows important effects of soil and shadows on the PRI vs EPS relationship used for fruit quality assessment if non-pure crown reflectance was extracted from the imagery.  相似文献   

19.
A new dopamine-derivative, i.e. N-(3,4-dihydroxyphenethyl)-3,5-dinitrobenzamide (N-DHPB), was synthesized and its application was investigated for the simultaneous determination of N-acetylcysteine (NAC) and acetaminophen (AC) using modified multiwall carbon nanotubes paste electrode. This modified electrode exhibited a potent and persistent electron mediating behavior followed by well separated oxidation peaks of NAC and AC. The peaks current of differential pulse voltammograms of NAC and AC increased linearly with their concentration in the ranges of 0.5-200 μmol L−1 NAC and 15.0-270 μmol L−1 AC. The detection limits for NAC and AC were 0.2 μmol L−1 and 10.0 μmol L−1, respectively. The relative standard deviation for seven successive assays of 1.0 and 30.0 μmol L−1 NAC and AC were 1.7% and 2.2%, respectively. The proposed sensor was successfully applied for the determination of NAC in human urine, tablet, and serum samples.  相似文献   

20.
Masons working with concrete masonry unit block have high rates of work-related musculoskeletal disorders to the low back and shoulders associated with repetitively lifting and buttering heavy block. A new material, autoclaved aerated concrete, may reduce the risk of shoulder and back injury but, ergonomic evaluation is needed. This study evaluated shoulder exposure parameters, low back stress, and worker perceptions in two groups of journey level masons, one using CMU and the other using AAC block. Results indicate that for the left arm AAC masons spent significantly more time than CMU masons in static (38.2% versus 31.1%, respectively), and less time in slow motions (48.2% versus 52.2%, respectively) and faster motions (13.6% versus 16.7%, respectively) (p < 0.05). CMU masons had significantly greater shoulder and low back pain (p = 0.009) and they held block significantly longer than AAC masons (p < 0.001). Low back compressive forces were high for both materials. Masons handling AAC demonstrated less left upper extremity stress but both materials were estimated to be hazardous to the low back.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号