首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(vinyl alcohol) was used to make hydrogels containing various amounts of collagen. These bioartificial materials, made of synthetic and biological polymers, were studied to investigate the effect of the presence of the collagen on the structural properties of the hydrogels. A comparison between thermal and morphological properties of collagen-containing hydrogels and hydrogels of pure poly(vinyl alcohol) was made.  相似文献   

2.
Hydrogels are three-dimensional polymeric networks very similar to biological tissues and potentially useful as soft tissue substitutes and drug delivery systems. Many synthetic polymers can be used to make hydrogels: poly (vinyl alcohol) is widely employed to make hydrogels for biomedical applications. Improvements in the biocompatibility characteristics of synthetic materials could be achieved by the addition of biological macromolecules. The resulting materials named bioartificial polymeric materials could possess the good mechanical properties of the synthetic component and adequate biocompatibility due to the biological component. We have used poly (vinyl alcohol) to make hydrogels containing various amounts of hyaluronic acid. These bioartificial materials were studied to investigate the effect of the presence of the hyaluronic acid on the structural properties of the hydrogels. Thermal, mechanical, morphological and X-ray analyses were performed. A close correspondence between the network consistency and the degree of crystallinity developed in the matrix suggested that the hyaluronic acid, when its content is about 20%, could provide heterogeneous crystallization nuclei for poly (vinyl alcohol) thus increasing the crystallization degree, and consequently, the storage modulus.  相似文献   

3.
The porosity of hardened cement paste was analysed using fluid displacement methods, optical, scanning and transmission electron microscopy and mercury intrusion porosimetry. Attention has been drawn to the problems of mercury porosimetry and in particular to the extent of the pore volume which is missed by mercury. Previous workers have assigned the lost porosity to pore sizes too fine to be seen by mercury but this paper considers the contribution of closed pores. Nitrogen and water adsorption studies have been carried out on the pastes to determine qualitatively the magnitude of the pore volume beyond the range of mercury porosimetry. This volume was found to be very small. Emphasis has been placed upon the importance of large spherical pores, which may be missed by mercury porosimetry and adsorption studies, in determining the strength of cement pastes.  相似文献   

4.
Hydrogels are three-dimensional polymeric networks very similar to biological tissues. Many synthetic polymers can be used in preparing hydrogels. Among them poly(vinyl alcohol) (PVA), physically crosslinked by repeated freeze-thawing cycles of polymer aqueous solutions, is widely employed to make hydrogels for biomedical applications. To increase the similarity between hydrogels and natural tissues and to obtain polymeric hybrid tissues, we attempted to incorporate 3T3 cells, from a mouse fibroblast cell line, into PVA hydrogels obtained by one freeze-thawing cycle using as a solvent complete culture medium. Hydrogels were also made using eight freeze-thawing cycles from PVA solutions prepared using as a solvent either complete culture medium or water. Cell adhesion experiments were performed by seeding 3T3 and human umbilical vein endothelial cells (HUVEC) on to the hydrogel surface. The effect of the solvent and of the different number of freeze-thawing cycles on the mechanical characteristics of the PVA hydrogels were investigated by dynamic-mechanical techniques. A scanning force microscope analysis of the hydrogel surface viscoelastic properties was also carried out. Our results show that PVA is not cytotoxic. Although PVA hydrogel surface characteristics do not seem to favour the adhesion of substrate-dependent cells, encouraging results were obtained with the 3T3 cells incorporation. DMA analysis indicates that the networks prepared by eight freeze-thawing cycles possess a mechanical consistency comparable, even slightly better, than the ones prepared by only one freeze-thawing cycle and used for the cell incorporation studies.  相似文献   

5.
Hydrogels are three-dimensional polymeric networks very similar to biological tissues and potentially useful as drug delivery systems. Poly(vinyl alcohol)-based hydrogels containing different amounts of dextran or chitosan were prepared using the freezing–thawing method. Repeated freezing–thawing cycles of a poly(vinyl alcohol) (PVA) aqueous solution lead to the formation of crystallites which act as cross-linking sites, and a hydrogel with a high capacity to swell is obtained. The effects of the two different polysaccharides on the properties of the obtained materials were investigated by differential scanning calorimetry, dynamic mechanical analysis and scanning electron microscopy. In addition the release with time of poly(vinyl alcohol) in aqueous medium, was monitored and evaluated. On the basis of the obtained results it seems that the presence of dextran favors the crystallization process of PVA, allowing the formation of a more ordered and homogeneous structure. Instead, chitosan seems to perturb the formation of PVA crystallites leading to a material with a less regular structure. © 1999 Kluwer Academic Publishers  相似文献   

6.
Polymeric membranes were prepared by mixing poly (vinyl alcohol) (PVA) and poly (acrilic acid) (PAA) solutions (10/90 weight ratio), freeze-drying and crosslinking under vacuum. The membranes were then coated with alginic acid sodium salt, and gelation was accomplished by calcium chloride. The resulting membrane structure was essentially trabecular, with pore size ranging from 50 to 100 m. Glucose and insulin diffusions reached a plateau at 2 and 32 min, respectively. Immunoglobulins and red blood cells did not cross the membranes. Gelpermeation HPLC showed that the membrane wall was impermeable to compounds with a molecular weight higher than 100 000 D. Biocompatibility of the membranes was demonstrated by showing minimal fibrotic reaction at 3 weeks after intraperitoneal implantation into mice. Porcine islets were placed into the membranes and cultured at 37°C for 7 days, at which time the incapsulated were shown to release insulin in response to glucose. These results support the use of PVA/PAA membranes for bioartificial pancreas studies.  相似文献   

7.
Hydrogels based on chitosan and dextran as potential drug delivery systems   总被引:1,自引:0,他引:1  
The release of human growth hormone (GH) from bioartificial polymeric materials in the form of hydrogels, was measured in vitro for up to 3 weeks. Poly(vinyl-alcohol) (PVA) was blended, in different ratios, with two biological polymers, dextran and chitosan respectively. These blends were used to prepare hydrogels, using a freeze–thawing method. The hydrogels were loaded with GH, and their potential use as delivery systems was investigated. The release with time of PVA, in aqueous medium, was also monitored and evaluated. Scanning electron microscopy was used to investigate the structure of the hydrogels. The results obtained indicated that GH can be released from both dextran/PVA and chitosan/PVA hydrogels. The initial GH concentration used for sample loading affected the total quantity of GH released but not the pattern of release. The amount of GH released was affected by the content of the biological component. The percentage of PVA released was low but it was, however, related to the content of chitosan and dextran in the blends. ©1999 Kluwer Academic Publishers  相似文献   

8.
Poly(vinyl alcohol) (PVA) is a water-soluble, biocompatible and biodegradable polymer, which has been widely applied in biomedical fields. In this paper, novel physically cross-linked hydrogels composed of PVA and comprising a blend of poly(vinyl alcohol) (PVA) with different concentrations of HCl, NaOH and NaCl are prepared by a freezing/thawing treatment of aqueous solutions. The structure and complexation of the electrolytes were studied by Fourier transform infrared (FTIR) spectroscopy. The mechanical properties were investigated using rheometery and the thermal transitions of the hydrogels were examined by modulated differential scanning calorimetry (MDSC). Freeze/thawed PVA gels containing NaOH showed overall enhanced swelling with increased mechanical strength over traditional gels prepared by chemical or irradiative crosslinking techniques. These novel physically cross-linked hydrogels show promise for a variety of biomedical and drug delivery applications.  相似文献   

9.
Poly(vinyl alcohol) (PVA) hydrogel has been considered as a very interesting and promising material for articular cartilage replacement. The most vital shortcoming of PVA hydrogels is that their mechanical properties are difficult to meet the requirements of articular cartilage. In the present work, blend hydrogels based on PVA and poly (vinyl pyrrolidone) (PVP) were prepared by repeated freezing and thawing method. Such hydrogel had similar internal three-dimensional structure and water content (approximately 75%) as nature articular cartilage. The mechanical and tribological properties were investigated to find out that change of mechanical and tribological properties of PVP/PVA hydrogels were significantly dependent on PVP content and freezing–thawing cycles. The blend hydrogel with 1 wt.% PVP had the best mechanical properties and the friction system consisting of such blend hydrogel and stainless steel ball exhibited a mixed lubrication regime especially under bovine serum lubrication. The results established that such hydrogel would be a novel attractive material for articular cartilage replacement.  相似文献   

10.
This body of work describes the development of a porous hydrogel for wound healing applications. In the present study poly (vinyl alcohol) (PVA) and poly (acrylic acid) (PAA) based hydrogels were prepared, and their properties were examined. Varying concentrations of the polymers and distilled water were used to prepare the hydrogels. The use of a high shear mixer, for foaming the PVA and PVA/PAA gels, and how this physical change can affect the structure and porosity of the hydrogel in question, represents a key feature of this work. The mechanical and thermal properties were determined by parallel plate rheometry and modulated differential scanning calorimetry (MDSC) respectively. The results indicated that the hydrogels containing low concentration of PVA and high volume of H2O are significantly weaker than those synthesised with higher concentrations of PVA. The thermal analysis shows distinct endotherms and provides evidence of crystallisation. The chemical structure of the hydrogels was confirmed by means of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR).  相似文献   

11.
以二甲基亚砜(DMSO)水溶液为分散介质,采用冷冻-解冻法制备了聚乙烯醇/明胶复合水凝胶,并研究了其透明性的溶剂敏感性。研究发现,将水凝胶交替置于去离子水和不同浓度的DMSO水溶液中,其透光率呈周期性变化;随DM-SO浓度的升高,其透光率的响应速率加快。通过X射线衍射(XRD)研究了聚乙烯醇/明胶复合水凝胶和纯聚乙烯醇水凝胶的聚集态结构。结果表明,两种水凝胶在不同溶剂中结构差异很大,并具有可逆转变性。随复合水凝胶中水含量的增加,其结晶度减小。该复合水凝胶的溶剂敏感性可能与其内部的结晶形态在不同溶剂中的转变或溶剂诱导相分离有关。  相似文献   

12.
The interaction between diglycidyl ether bisphenol A and conventional and waterdeficient phosphate binders has been investigated. The data of chemical analysis, IR spectroscopy, and differentialthermal analysis point to the formation of a spatially crosslinked epoxy polymer under the influence of the phosphate binders. It has been shown that conventional binders can be used as hightemperature hardeners of epoxy oligomers. When waterdeficient binders are used, the formation of a threedimensional polymer structure is observed at room temperature.  相似文献   

13.
The use of accelerators prevents early-frost by developing strength of concrete in cold weather. However, no security of workability occurs because early hydration makes them to react rapidly. Thus, the accelerators via tabletting were coated with polyvinyl alcohol (PVA) of water-soluble polymer substance. The discussion includes the following: mortar setting time, workability by elapsed time, early strength to assure the development of adequate strength, and freezing–thawing resistance. As a result, workability can be secured as well as the development of early strength to prevent early-frost. The porosity and progress of hydration affecting the concrete were also found to be superior by analyzing the mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM) results.  相似文献   

14.
Films were prepared by solution casting from blends of hyaluronic acid derivatives and ethylene-vinyl alcohol copolymers. A chemico-physical and biological characterization was carried out on these bioartificial materials made of synthetic and biological polymers. The morphological and chemical properties of the films were investigated by scanning electron microscopy and differential scanning calorimetry. The transport properties of these films were tested in liquid systems to evaluate their possible use in dialysis and/or haemodialysis. The biocompatibility was investigated by a haemocompatibility test based on the contact activation of plasma prekallikrein. No particular interaction between the two components was observed. The results of the permeation tests were compared with those obtained using commercial products such as Cuprophane and poly(acrylonitrile) membranes. These tests indicate that the permeability of the blends decreases as the content of the synthetic polymer increases. The good haemocompatibility of these materials suggests their possible use as biomaterials.  相似文献   

15.
Graphite/poly (vinyl alcohol) (PVA) hydrogel composites, which were designed as the porous ringy skirt surrounding the transparent core of a novel artificial cornea, were prepared by using the freeze/thawing process and the particle-leaching technique. The properties of the composites, including the water content, the mechanical strength, the porous architecture and the interactions between the graphite and PVA, were investigated. The tissue responses to the composite and pure PVA hydrogel were studied by in vivo implantation in the dorsal muscles of mice. The results showed that chemical interactions were present between the graphite and PVA in the composite, which benefited the combination of the two phases and enhanced the uniform distribution of graphite particles in the PVA matrix. However, the present of graphites in the PVA hydrogels reduced the tensile strength, elongation at break and water content of the composite. Moreover, the porous graphite/PVA hydrogel composite had interconnective pore structure with high porosity and enough mechanical strength. According to the histological analysis of 1 week and 12 weeks post-implantation, the graphite/PVA hydrogel composites showed less inflammatory reactions than the PVA hydrogels at the 1 week post-implantation. Moreover, compared to pure PVA hydrogel, the graphite/PVA hydrogel composite exhibited enhanced migration and infiltration of cells, and more neovascularization and tissue ingrowth. These in vivo characteristics will be beneficial for the long-term biofixation of artificial cornea. Therefore, the porous graphite/PVA hydrogel composite has a potential to be used as novel artificial cornea skirt.  相似文献   

16.
用溶液共混法和冷冻解冻工艺制备聚乙烯醇(PVA)/聚乙烯基吡咯烷酮(PVP)二元复合水凝胶,通过红外、XRD、DSC、含水率与溶胀测试等对材料的结构与性能进行分析表征,并研究了材料的力学性能与细胞毒性.结果表明,PVP能与PVA通过化学键合形成分子级混合的PVA/PVP复合水凝胶.PVP含量可以影响PVA水凝胶的结构、结晶度、玻璃化转变温度、吸水率以及力学性能.该复合水凝胶具有高的吸水率和良好的细胞相容性,而且具有类似天然软骨的可渗透性.PVP/PVA复合水凝胶是一种有发展前景的人工软骨替代材料.  相似文献   

17.
The formation of hydroxyapatite–calcium polyacrylate composites   总被引:2,自引:0,他引:2  
Tetracalcium phosphate (TetCP, Ca4(PO4)2O) reacts rapidly with polyacrylic acid (PAA). Complete reaction results in the formation of hydroxyapatite (HAp) and calcium polyacrylate. Consequently, this combination of reactants can react to form a dental cement. However, reaction occurs so rapidly that it would be difficult to achieve a homogeneous mixture of reactants suitable for use in restorations. In order to explore extending the working time, the effects of prehydrating the TetCP to form surface layers of HAp on the TetCP particles was explored. Prehydration was found to be an effective means of allowing workability. Therefore, the effects of the proportions of TetCP and PAA, with and without HAp filler, on cement properties were investigated. The extents of the reactions were investigated by X-ray diffraction analysis; the extents of PAA neutralization were studied by Fourier transform infra-red spectroscopy (FTIR); pore structures were determined by mercury intrusion porosimetry; microstructures were observed by scanning microscopy, and compressive strengths were determined. After curing for 17 days at room temperature PAA neutralization was almost complete; however, residual TetCP could be detected by X-ray diffraction and PAA by FTIR. As expected, the compressive strengths of the cements showed a dependence on the liquid (water+polymer)-to-solid (TetCP+HAp filler) used. The presence of HAp filler caused a significant decrease in compressive strength and increasing the proportion of HAp filler resulted in a decrease in the compressive strength. The characteristics of the load–deflection curves showed a dependence on the presence of HAp filler. In the absence of filler, two slopes were observed in the curves whereas a linear curve, typical of a ceramic, was observed when HAp filler was present. Mercury intrusion porosimetry (MIP) indicated the majority of the porosity was present in pores larger than 0.1 m. Porosity increased with increasing liquid-to-solids ratio and with an increasing proportion of HAp filler at a constant liquid-to-solids ratio. Microstructural observations indicated the effect of HAp filler on increasing porosity was the result of porosity present in the filler itself. Thus, poorly consolidated HAp filler contributed to increased porosity and reduced compressive strength. © 1999 Kluwer Academic Publishers  相似文献   

18.
The effect of a crack on time-of-flight of shear waves (4.5 MHz) polarized in perpendicular (t ) and parallel (t ) directions to the crack surface, propagating parallel to the direction of crack growth is investigated. The first and second back-wall echoes are used instead of the weak crack-tip echo for the measurement of time-of-flight. The measurement is made for fatigue cracks grown by different loading histories in ferritic steel (pressure vessel steel A533B-1) under the condition of no loading. The normalized time-of-flight (t t )/t at the crack position is found to change proportionally as the ratio of crack depth to specimen width increases. The change is mainly due to the effect of plastic deformation occurring around the crack ont . It is shown that the depth of tightly closed fatigue crack in austenitic stainless steel (AISI 304) also can be evaluated under the condition of no loading by using this relationship.  相似文献   

19.
Fibrovascular tissue ingrowth into poly(vinyl alcohol) (PVA) sponges of different pore sizes was investigated by incorporating basic fibroblast growth factor (bFGF) into the sponges. The average pore size of PVA sponges used in this study was 30, 60, 110, 250, 350, and 700 m and gelatin microspheres were employed as release carrier of bFGF. The sponges were subcutaneously implanted into the back of mice after incorporating free bFGF or gelatin microspheres containing bFGF into the sponges. Fibrovascular tissue infiltrated with time into the sponge pores and the extent of fibrous tissue ingrowth showed a maximum at a pore size around 250 m 1 and 6 weeks after implantation. Significant promotion of the growth of fibrous tissue by bFGF was observed only at 3 weeks post-implantation (p < 0.05). New capillaries were formed in the tissue at any time, as long as bFGF was given to the sponges. Both empty gelatin microspheres and phosphate buffered solution neither promoted tissue ingrowth nor induced capillary formation in the sponges. It was concluded that bFGF was essential to induce the fibrovascular tissue ingrowth into the pores of PVA sponges. ©2000 Kluwer Academic Publishers  相似文献   

20.
Lactobionic acid, bearing a -galactose group, was coupled with poly(allyl amine) to provide synthetic extracellular matrices together with poly(vinyl alcohol) (PVA). The hepatocytes were encapsulated in Ba-alginate capsules with galactosylated poly(allyl amine) (GA) and PVA as extracellular matrices. From microscopic observation, it was revealed that the microcapsule prepared has a highly porous structure with interconnected pores and pore sizes ranging between 50–150 nm on both the surface and the cross-section. It was found, from the permeability experiment of microcapsules using FITC-dextrans with different molecular weights, that the capsule has a molecular weight cut off (MWCO) of 120 kDa, showing the potential that it can function as an immunoprotecting wall. The hepatocytes, cultured with GA and PVA in the core of the microcapsule, rapidly aggregated within a day, thus resulting in good metabolic functions such as albumin synthesis and ammonia removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号