首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural modifications in the zircon and scheelite phases of ThGeO4 induced by swift heavy ions (93 MeV Ni7+) at different fluences as well as pressure quenching effects are reported. X-ray diffraction and Raman measurements at room temperature on the irradiated zircon phase of ThGeO4 indicate the occurrence of stresses that lead to a reduction of the cell volume up to 2% followed by its transformation to a mixture of nano-crystalline and amorphous scheelite phases. Irradiation of the zircon phase at liquid nitrogen temperature induces amorphization at a lower fluence (7.5 × 1016 ions/m2), as compared to that at room temperature (6 × 1017 ions/m2). Scheelite type ThGeO4 irradiated at room temperature undergoes complete amorphization at a lower fluence of 7.5 × 1016 ions/m2 without any volume reduction. The track radii deduced from X-ray diffraction measurements on room temperature irradiated zircon, scheelite and low temperature irradiated zircon phases of ThGeO4 are, 3.9, 3.5 and 4.5 nm, respectively. X-ray structural investigations on the zircon phase of ThGeO4 recovered after pressurization to about 3.5 and 9 GPa at ambient temperature show the coexistence of zircon and disordered scheelite phases with a larger fraction of scheelite phase occurring at 9 GPa. On the other hand, the scheelite phase quenched from 9 GPa shows crystalline scheelite phase pattern.  相似文献   

2.
Nanophases of TiO2 are achieved by irradiating polycrystalline thin films of TiO2 by 100 MeV Au ion beam at varying fluence. The surface morphology of pristine and irradiated films is studied by atomic force microscopy (AFM). Phase of the film before and after irradiation is identified by glancing angle X-ray diffraction (GAXRD). The blue shift observed in UV-vis absorption edge of the irradiated films indicates nanostructure formation. Electron spin resonance (ESR) studies are carried out to identify defects created by the irradiation. The nanocrystallisation induced by SHI irradiation in polycrystalline thin films is studied.  相似文献   

3.
NiO thin films grown on Si(1 0 0) substrate by electron beam evaporation and sintered at 500 and 700 °C were irradiated with 120 MeV Au9+ ions. The FCC structure of the sintered films was retained up to the highest fluence (3 × 1013 ions cm−2) of irradiation. In the low fluence (?1 × 1013 ions cm−2) regime however, the evolution of the XRD pattern with fluence showed a wide variation, critically depending upon their initial microstructure. Though irradiation is known to induce disorder in the structure, we observe improvement in crystallization and texturing at intermediate fluences of irradiation.  相似文献   

4.
The existence states of deuterium in LiAlO2 were analyzed by in situ IR absorption spectroscopy during irradiation with 3 keV at room temperature. Multiple IR absorption peaks that were related to O-D stretching vibrations were observed, mainly at 2650 cm−1 (O-Dα), 2600 cm−1 (O-Dβ), and 2500 cm−1 (O-Dγ). The O-Dα was assigned to the surface O-D. The O-Dβ and O-Dγ were interpreted as two distinct O-D states for three candidates: O-D of substitutional D+ for Li+; O-D of substitutional D+ for Al3+; and O-D of interstitial D+. O-Dβ was the dominant O-D state for deuterium irradiated into LiAlO2, and had higher stability than O-Dγ. Heating after ion irradiation led to the desorption of D2 and an increase in the intensity of O-Dβ, which implies that some of the deuterium irradiated into LiAlO2 exists in non-O-D states, such as D captured by F centers.  相似文献   

5.
The band-structure, interface and surface modification by swift heavy ion irradiation of In0.55Ga0.45As/InP multi quantum wells have been studied using photoluminescence, high resolution X-ray diffraction and atomic force microscopy. Three distinct photoluminescence peaks were observed for as-grown samples at low temperature and at room temperature the peaks merge together. Detailed analysis has been carried out to understand the origin of additional satellite peaks. A peak shift of about 23 nm was observed for irradiated samples after annealing. Highly-ordered satellite peaks were observed in X-ray scans of as-grown and Ag ion irradiated samples. In comparison, Au ion irradiated sample showed stronger interfacial degradation as seen by the diminished satellite peaks. The peak position of the irradiated samples shifted to the compressive side and was broadened in comparison with as-grown samples. The as-grown and annealed samples show smooth surfaces whereas irradiation results in nano-sized dot/island types of structures at the surface. The results are discussed in the light of complementary information provided by these techniques.  相似文献   

6.
Al2O3 thin films find wide applications in optoelectronics, sensors, tribology etc. In the present work, Al2O3 films prepared by electron beam evaporation technique are irradiated with 100 MeV swift Si7+ ions for the fluence in the range 1 × 1012 to 1 × 1013 ions cm−2 and the structural properties are studied by glancing angle X-ray diffraction. It shows a single diffraction peak at 38.2° which indicates the γ-phase of Al2O3. Further, it is observed that as the fluence increases up to 1 × 1013 ions cm−2 the diffraction peak intensity decreases indicating amorphization. Surface morphology studies by atomic force microscopy show mean surface roughness of 34.73 nm and it decreases with increase in ion fluence. A strong photoluminescence (PL) emission with peak at 442 nm along with shoulder at 420 nm is observed when the samples are excited with 326 nm light. The PL emission is found to increase with increase in ion fluence and the results are discussed in detail.  相似文献   

7.
We observed an increase in the conductivity of a thiospinel compound, CuIr2S4, induced by H+ and He+ irradiation with energies of 1-2 MeV. It was indicated that the metastable conductive phase was produced by electronic excitation due to the ion beam and this phase was similar to the X-ray-induced phase. Conductivity as a function of ion fluence was analyzed by a simple model where the ion-induced change occurred in a cylindrical region around an ion trajectory. The cross-sectional area of the cylinder was obtained by analyzing the conductivity as a function of ion fluence for each ion, and it was found that an impinging ion produced a nanowire in the conductive phase. In addition, the yield of the Ir dimer displacement, which was related to the increase in conductivity, was considerably high. The ion irradiation effect reported in this paper is unique with regard to the high yield and low linear energy transfer (LET) in the formation of the conductive-phase nanowire. Both these unique aspects could be ascribed to the low band-gap energy and strong electron-lattice interaction of this compound.  相似文献   

8.
We have investigated morphology change of FePt nanogranular films (FePt)47(Al2O3)53 under irradiation with 210 MeV Xe ions. Here, electron tomography technique was extensively employed to clarify three-dimensional (3D) structure in irradiated specimens, in addition to conventional transmission electron microscopy (TEM) techniques such as bright-field observation and scanning TEM energy dispersive X-ray spectroscopy (STEM-EDX) analysis. The ion irradiation induces the coarsening of FePt nanoparticles with elongation along the beam direction. Electron tomography 3D reconstructed images clearly demonstrated that when the fluence achieves 5.0 × 1014 ions/cm2, well-coarsened FePt balls have been formed on the irradiated surface, and the particles in the film interior have been deformed into rods along the ion trajectory. The alloy particles become inhomogeneous in composition after prolonged irradiation up to 1.0 × 1015 Xe ions/cm2. The particle center is enriched with Pt, while Fe is slightly redistributed to the periphery.  相似文献   

9.
E-beam evaporated aluminum oxide films were irradiated with 120 MeV swift Au9+ ions in order to induced nanostructure formation. Atomic force microscope (AFM) results showed the formation of nanostructures for films irradiated with a fluence of 1 × 1013 ions cm−2. The particle size estimated by section analysis of the irradiated film was in the range 25-30 nm. Glancing angle X-ray diffraction (GAXRD) revealed the amorphous nature of the films. Two strong Photoluminescence (PL) emission bands with peaks at ∼430 nm and ∼645 nm besides a shoulder at ∼540 nm were observed in all irradiated samples. The PL intensity is found to increase with increase of ion fluence.  相似文献   

10.
Swift heavy ion irradiation has been successfully used to modify the structural, optical, and gas sensing properties of SnO2 thin films. The SnO2 thin films prepared by sol-gel process were irradiated with 75 MeV Ni+ beam at fluences ranging from 1 × 1011 ion/cm2 to 3 × 1013 ion/cm2. Structural characterization with glancing angle X-ray diffraction shows an enhancement of crystallinity and systematic change of stress in the SnO2 lattice up to a threshold value of 1 × 1013 ions/cm2, but decrease in crystallinity at highest fluence of 3 × 1013 ions/cm2. Microstructure investigation of the irradiated films by transmission electron microscopy supports the XRD observations. Optical properties studied by absorption and PL spectroscopies reveal a red shift of the band gap from 3.75 eV to 3.1 eV, and a broad yellow luminescence, respectively, with increase in ion fluence. Gas response of the irradiated SnO2 films shows increase of resistance on exposure to ammonia (NH3), indicating p-type conductivity resulting from ion irradiation.  相似文献   

11.
Ion beam processing of organic/inorganic thin films has been shown to be an effective means in converting polymeric films into their final ceramic-like state. In this study, hybrid sol-gel derived thin films based on TEOS (tetraethylorthosilicate) Si(OC2H5)4 and MTES (methyltriethoxysilane) CH3Si(OC2H5)3 were prepared and deposited on Si substrates by spin coating. After the films were allowed to air dry, they were heat treated at 300 °C for 10 min. Ion irradiation was performed at room temperature using 125 keV H+ and 250 keV N2+ ions with fluences ranging from 1 × 1014 to 5 × 1016 ions/cm2. FT-IR and Raman spectroscopies were used to quantify the chemical structural transformations which occurred including the evolution of the organic components, the cross-linking of silica clusters, and the clustering of carbon.  相似文献   

12.
In this paper, we present the changes occurring in Co/Pt bi- and multi-layer thin films modified under wide range of ion energy and species and fluence. We have shown the possibility of achieving controlled tuning of magnetic properties of the Co/Pt thin film system. Monte Carlo simulation results for ion-induced atomic displacements were used to explain the observed effects of ion-irradiation interface mixing across the Co/Pt interfaces. Phase formation has been explained in the light of heat of formation rule. On the other hand, we propose that ion induced point defect clustering governs the changes occurring in the structural and the magnetic properties.  相似文献   

13.
Bombardment of semiconductors with fullerene has been used to induce the formation of tracks. It is now accepted that target electronic excitation and ionization, which gives rise to the slowing down of the projectile is essential to calculate the track diameter. In the case of cluster beams, like fullerenes, the electronic excitation induced by each of the cluster constituents is enhanced, for certain projectile energies and target depths, by the so-called vicinage effects. Here we use a simulation code to calculate the energy lost by a swift fullerene ion beam in InP, paying special attention to the vicinage effects where they are significative. The code describes classically the movement of each cluster constituent under the influence of the self-retarding force, the Coulomb repulsion among molecular fragments, the wake forces responsible for the vicinage effects and the multiple scattering with the target nuclei. The simulation code also takes into account the possibility that the molecular fragments can also capture or loss electrons from the target, changing its charge state in their travel through the solid.Our simulations show that the energy deposited by the atomic ions that constitute the C60 ion is clearly higher than the energy deposited by the same atomic ions but isolated. This difference being larger as the incident energy increases. We have predicted that track diameters of can be obtained in an InP target when using C60 ions with an initial energy of 300 MeV.  相似文献   

14.
Silicon oxynitride (SixOyNz) layers were synthesized by implanting 16O2+ and 14N2+ 30 keV ions in 1:1 ratio with fluences ranging from 5 × 1016 to 1 × 1018 ions cm−2 into single crystal silicon at room temperature. Rapid thermal annealing (RTA) of the samples was carried out at different temperatures in nitrogen ambient for 5 min. The FTIR studies show that the structures of ion-beam synthesized oxynitride layers are strongly dependent on total ion-fluence and annealing temperature. It is found that the structures formed at lower ion fluences (∼1 × 1017 ions cm−2) are homogenous oxygen-rich silicon oxynitride. However, at higher fluence levels (∼1 × 1018 ions cm−2) formation of homogenous nitrogen rich silicon oxynitride is observed due to ion-beam induced surface sputtering effects. The Micro-Raman studies on 1173 K annealed samples show formation of partially amorphous oxygen and nitrogen rich silicon oxynitride structures with crystalline silicon beneath it for lower and higher ion fluences, respectively. The Ellipsometry studies on 1173 K annealed samples show an increase in the thickness of silicon oxynitride layer with increasing ion fluence. The refractive index of the ion-beam synthesized layers is found to be in the range 1.54-1.96.  相似文献   

15.
ZnAl2O4 spinels have been irradiated with several ions (Ne, S, Kr and Xe) at the IRRSUD beamline of the GANIL facility, in order to determine irradiation conditions (stopping power, fluence) for amorphisation. We observed by transmission electron microscopy (TEM) that with Xe ions at 92 MeV, individual ion tracks are still crystalline, whereas an amorphisation starts below a fluence of 5 × 1012 cm−2 up to a total amorphisation between 1 × 1013 and 1 × 1014 cm−2. The coexistence of amorphous and crystalline domains in the same pristine grain is clearly visible in the TEM images. All the crystalline domains remain close to the same orientation as the original grain. According to TEM and X-ray Diffraction (XRD) results, the stopping power threshold for amorphisation is between 9 and 12 keV nm−1.  相似文献   

16.
Nanoparticle formation in the, rf-sputtering grown, polycrystalline CeO2 thin films is achieved by the swift heavy ion (SHI) irradiation. Crystal structure and phases present in the as-grown and irradiated thin films are investigated by the X-ray diffraction (XRD) measurements. Irradiation induced formation of spherically shaped nanostructures, on the film surface, is confirmed by the atomic force microscopy (AFM). The Raman spectra of the irradiated samples show increased line-width and peak position shifting in the Raman active mode (F2g) of CeO2, indicative of the nanocrystallization in the irradiated CeO2 thin films. Formation of nanostructures in the irradiated samples is also briefly discussed in the light of ion energy and energy loss mechanisms.  相似文献   

17.
A detailed investigation of the surface morphology of the pristine and swift heavy ion (SHI) irradiated La0.7Sr0.3MnO3 (LSMO) thin film using atomic force microscope (AFM) is presented. Highly c-axis oriented LSMO thin films were grown on LaAlO3 (1 0 0) (LAO) substrates by the pulsed laser deposition (PLD) technique. The films were annealed at 800 °C for 12 h in air (pristine films) and subsequently, irradiated with SHI of oxygen and silver. The incident fluence was varied from 1 × 1012 to 1 × 1014 ions/cm2 and 1 × 1011 to 1 × 1012 ions/cm2 for oxygen and silver ions, respectively. X-ray diffraction (XRD) studies reveal that the irradiated films are strained. From the AFM images, various details pertaining to the surface morphology such as rms roughness (σ), the surface rms roughness averaged over an infinite large image (σ), fractal dimension (DF) and the lateral coherence length (ξ) were estimated using the length dependent variance measurements. In case of irradiated films, the surface morphology shows drastic modifications, which is dependent on the nature of ions and the incident fluence. However, the surface is found to remain self-affine in each case. In case of oxygen ion irradiated films both, σ and DF are observed to increase with fluence up to a dose value of 1 × 1013 ions/cm2. With further increase in dose value both σ and DF decreases. In case of silver ion irradiated films, σ and DF decrease with increase in fluence value in the range studied.  相似文献   

18.
CdTe polycrystalline thin films possessing hexagonal phase regions are obtained by spray deposition in presence of a high electric field. Thin film samples are irradiated with 100 MeV Ag ions using Pelletron accelerator to study the swift heavy ion induced effects. The ion irradiation results in the transformation of the metastable hexagonal regions in the films to stable cubic phase due to the dense electronic excitations induced by beam irradiation. The phase transformation is seen from the X-ray diffraction patterns. The band gap of the CdTe film changes marginally due to ion irradiation induced phase transformation. The value changes from 1.47 eV for the as deposited sample to 1.44 eV for the sample irradiated at the fluence 1×1013 ions/cm2. The AFM images show a gradual change in the shape of the particles from rod shape to nearly spherical ones after irradiation.  相似文献   

19.
Fe-54at.%Rh thin films were irradiated with 10 MeV iodine ions at room temperature. Before and after the irradiations, the changes in magnetic properties and the lattice structure of the samples were studied by means of a SQUID magnetometer and X-ray diffraction. For the low fluence irradiation, the SQUID measurement at 20 K shows that the anti-ferromagnetic region of the thin film is changed into ferromagnetic region by the irradiation. As the film thickness is much smaller than the ion range, we can discuss the relationship between the density of energy deposited by ions and the change in magnetization quantitatively. For the high fluence irradiation, the magnetization of the film is strongly decreased by the irradiation, which can be explained as due to the change in lattice structure from B2 into A1 structure by the irradiation.  相似文献   

20.
We report a direct observation of segregation of gold atoms to the near surface regime due to 1.5 MeV Au2+ ion impact on isolated gold nanostructures deposited on silicon. Irradiation at fluences of 6 × 1013, 1 × 1014 and 5 × 1014 ions cm−2 at a high beam flux of 6.3 × 1012 ions cm−2 s−1 show a maximum transported distance of gold atoms into the silicon substrate to be 60, 45 and 23 nm, respectively. At a lower fluence (6 × 1013 ions cm−2) transport has been found to be associated with the formation of gold silicide (Au5Si2). At a high fluence value of 5 × 1014 ions cm−2, disassociation of gold silicide and out-diffusion lead to the segregation of gold to defect - rich surface and interface regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号