首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differential cross-sections for proton elastic scattering on sodium and for γ-ray emission from the reactions 23Na(p,p′γ)23Na (Eγ = 440 keV and Eγ = 1636 keV) and 23Na(p,α′γ)20Ne (Eγ = 1634 keV) were measured for proton energies from 2.2 to 5.2 MeV using a 63 μg/cm2 NaBr target evaporated on a self-supporting thin C film.The γ-rays were detected by a 38% relative efficiency Ge detector placed at an angle of 135° with respect to the beam direction, while the backscattered protons were collected by a Si surface barrier detector placed at a scattering angle of 150°. Absolute differential cross-sections were obtained with an overall uncertainty estimated to be better than ±6.0% for elastic scattering and ±12% for γ-ray emission, at all the beam energies.To provide a convincing test of the overall validity of the measured elastic scattering cross-section, thick target benchmark experiments at several proton energies are presented.  相似文献   

2.
Studies on the characteristics of 2010 keV resonance in 24Mg(p,p′γ)24Mg nuclear reaction for depth profiling Mg in thin films are reported. The resonance reaction, based on the detection of characteristic 1368 keV γ-rays, enables interference free measurement of Mg down to 2 × 1020 atoms/cm3 and has a probing depth of about 20 μm. The width of the resonance extracted from excitation curves for thick (>180 nm) thermally grown elemental Mg films, by SPACES is about 350 ± 50 eV. The reaction has been used to depth profile Mg in a Mg/Ti/Mg/Si film which provides interesting information on interfacial mixing involving Ti layer and the underlying Mg layer.  相似文献   

3.
Li coatings on various substrates have numerous applications: Boron neutron capture therapy, super conducting tokamak, etc.Unfortunately the main difficulty using Li is its reactivity in air and diffusion into metals. It is the only metal that reacts with nitrogen at room temperature and it tarnishes and oxidizes rapidly in air.In this work, we investigate how to profile thick Li layers (50 μm) deposited on SiO2 substrates by a method based on plasma sputtering, involving both DC sputtering and evaporation simultaneously.A thick Li layer (≈10 μm) was covered with a thin stainless steel layer to prevent oxidation during transfer of the sample from the sputtering chamber and the accelerator. Li coatings were investigated by RNRA and neutron threshold reaction to obtain interdiffusion profiles of the different components and their concentration. The depth profile using the 7Li(p,γ)8Be resonance nuclear reaction occurring at 440 keV allows us to obtain Li concentration versus depth up to 50 μm.Preliminary results indicate that homogeneous Li layers can be obtained and protected against air, even though it diffuses into the encapsulated layers.  相似文献   

4.
The PIXE technique is a reliable tool for the characterisation of thin aerosol samples, but it can underestimate the lightest measurable elements, like Na, Mg, Al, Si and P, owing to the absorption of their X-rays inside the sample. The PIGE technique is a valid help to determine corrections for such effect: in order to perform PIGE measurements relative to thin reference standards in an external beam set-up, we measured, at the external beam facility of the Tandetron accelerator of the LABEC laboratory in Florence, the γ-ray yields as a function of the proton beam energy for the reactions 19F(p,p′γ)19F (Eγ = 110 and 197 keV), 23Na(p,p′γ)23Na (Eγ = 440 keV) and 27Al(p,p′γ)27Al (Eγ = 843 and 1013 keV), in the proton energy range from 3 to 5 MeV. The measured yields are shown, and the determined most suitable energies for performing PIGE quantification of Na and Al are reported, together with the corresponding minimum detection limits (MDLs). The results of some test on PIGE accuracy and an evaluation of self-absorption effects in PIXE measurements on thin aerosol samples are also presented.  相似文献   

5.
We measured the thermal neutron cross-section and the resonance integral of the reaction 186W(n, γ)187W by the activation method using a 197Au(n, γ)198Au monitor reaction as single comparator. The high-purity natural W and Au metallic foils with and without a cadmium shield case of 0.5 mm thickness were irradiated in a neutron field of the Pohang neutron facility. The induced activities in the samples were measured by high-resolution γ-ray spectrometry with a calibrated p-type high-purity Ge detector. The necessary correction factors for γ-ray attenuation (Fg), thermal neutron self-shielding (Gth), and resonance neutron self-shielding (Gepi) effects, and the epithermal neutron spectrum shape factor (α) were taken into account. The thermal neutron cross-section for the 186W(n, γ)187W reaction has been determined to be 37.2 ± 2.1 barn, relative to the reference value of 98.65 ± 0.09 barn for the 197Au(n, γ)198Au reaction. The present result is, in general, in good agreement with most of the experimental data and the recently evaluated value of ENDF/B-VII.0 by 5.7%. By assuming the cadmium cut-off energy of 0.55 eV, the resonance integral obtained is 461 ± 39 barn, which is determined relative to the reference values of 1550 ± 28 barn for the 197Au(n, γ)198Au reaction. The present resonance integral value is in general good agreement with the recently measured values by 9%. The present result is lower than the evaluated ones by 10-13%.  相似文献   

6.
In this work, we present an alternative method for PIGE analysis of magnesium and beryllium in thick samples. This method is based on the ERYA – Emitted Radiation Yield Analysis – code, which integrates the nuclear reaction excitation function along the depth of the sample. For this purpose, the excitations functions of the 25Mg(p,p′γ)25Mg (Eγ = 585 keV) and 9Be(p,γ)10B (Eγ = 718 keV) reactions were employed. Calculated gamma-ray yields were compared, at several proton energy values, with experimental yields for thick samples made of inorganic compounds containing magnesium or beryllium. The agreement is better than 5%. Taking into consideration the experimental uncertainty of the measured yields and the errors related to the stopping power values, this agreement shows that effects as the beam energy straggling, ignored in the calculation, seem to play a minor role.  相似文献   

7.
A hydrogen standard has been carried out by ion implantation in silicon. The silicon wafer was implanted with hydrogen at different energies and fluences to provide a ∼100 nm flat distribution to the specimen. The samples obtained were characterized by mean of elastic recoil detection analysis (ERDA) and resonant nuclear reaction analysis (RNRA). All important properties of the hydrogen standard have been controlled: isotopic purity, depth profile, stability under ion irradiation and reproducibility. The standards were validated by the measurement of the resonant cross-section of the 13C(p,γ)14N reaction. The similarity of the resonance energy, the resonance width and the resonance strength measurements with those reported in literature confirms the validity of the proposed procedure for hydrogen standards. Therefore, this kind of target could be used to investigate all nuclear reactions in which a proton is involved, from reactions with astrophysical interest to the ones with concern in material analysis.  相似文献   

8.
We measured the thermal neutron cross-section and the resonance integral of the 98Mo(n,γ)99 Mo reaction by the activation method using a 197Au(n,γ)198 Au monitor reaction as a single comparator. The high-purity natural Mo and Au metallic foils with and without a cadmium shield case of 0.5 mm thickness were irradiated in a neutron field of the Pohang neutron facility. The induced activities in the activated foils were measured with a calibrated p-type high-purity Ge detector. The necessary correction factors for the γ-ray attenuation (Fg), the thermal neutron self-shielding (Gth) and the resonance neutron self-shielding (Gepi) effects, and the epithermal neutron spectrum shape factor (α) were taken into account. In addition, for the 99Mo activity measurements, the correction for true coincidence summing effects was also taken into account. The thermal neutron cross-section for the 98Mo(n,γ)99Mo reaction has been determined to be 0.136 ± 0.007 barn, relative to the reference value of 98.65 ± 0.09 barn for the 197Au(n,γ)198 Au reaction. The present result is, in general, in good agreement with most of the experimental data and the recently evaluated values of ENDF/B-VII.0, JENDL-3.3, and JEF-2.2 by 5.1% (1σ). By assuming the cadmium cut-off energy of 0.55 eV, the resonance integral for the 98Mo(n,γ)99Mo reaction is 7.02 ± 0.62 barn, which is determined relative to the reference values of 1550 ± 28 barn for the 197Au(n,γ)198Au reaction. The present resonance integral value is in general good agreement with the previously reported data by 8.8% (1σ).  相似文献   

9.
The paper reports the widths and differential cross-sections of resonances at 3.089, 3.379 and 3.717 MeV in the 32S(p,p′γ)32S nuclear reaction. The cross-sections are computed at 0° and 90° angles (relative to the beam direction) from thick target excitation curves constructed by measuring 2230 keV γ-rays, characteristic of the reaction. The differential cross-sections of resonances are about 18, 64 and 70 mb/sr respectively at 0° angle and decrease by about half around an angle of 90°. The first resonance, the sharpest among the three, exhibits a width of about 400 eV while those at 3.379 and 3.717 MeV are in 1.0-1.5 keV range. The widths of the resonances are extracted from the respective thick target excitation curves by an interquartile separation method and also by simulating their leading edges. A study of thick target yields in the 3.0-4.0 MeV proton energy region for several sulphide forming elements shows the absence of any significant interference. These resonances, as a result, can be effectively utilised for sensitive and high resolution depth profile measurements of sulphur in films and materials surfaces.  相似文献   

10.
We measured the isomeric yield ratios for the 44m,gSc isomeric pairs produced from four different photonuclear reactions 45Sc(γ,n)44m,gSc, natTi(γ,xn1p)44m,gSc, natFe(γ,xn5p)44m,gSc, and natCu(γ,xn8p)44m,gSc by using the activation method. The high purity natural Sc, Ti, Fe, and Cu metallic foils in disc shape were irradiated with uncollimated 2.5 GeV bremsstrahlung beams of the Pohang Accelerator Laboratory. The induced activities in the irradiated foils were measured by the high-resolution γ-ray spectrometry with a calibrated high-purity Germanium (HPGe) detector. In order to improve the accuracy of the experimental results the necessary corrections were made in the gamma activity measurements and data analysis. The obtained isomeric yield ratios for the 45Sc(γ,n)44m,gSc, natTi(γ,xn1p)44m,gSc, natFe(γ,xn5p)44m,gSc and natCu(γ,xn8p)44m,gSc reactions are 0.25 ± 0.03, 0.43 ± 0.05, 1.38 ± 0.14, and 1.89 ± 0.21, respectively. The present result for the natCu(γ,xn8p)44m,gSc reaction is in good agreement with the existing data. Our results for the 45Sc(γ,n)44m,gSc, natTi(γ,xn1p)44m,gSc, and natFe(γ,xn5p)44m,gSc reactions are the first measurements at 2.5 GeV bremsstrahlung. The obtained results are compared with the corresponding values found in the literature. The relation between the isomeric yield ratios and the complexity of the photonuclear reactions is discussed.  相似文献   

11.
A direct Monte Carlo program has been developed to calculate the backward (γb) and forward (γf) electron emission yields from 20 nm thick Al foil for impact of C+, Al+, Ar+, Cu+ and Kr+ ions having energies in the range of 0.1-10 keV/amu. The program incorporates the excitation of target electrons by projectile ions, recoiling target atoms and fast primary electrons. The program can be used to calculate the electron yields, distribution of electron excitation points in the target and other physical parameters of the emitted electrons. The calculated backward electron emission yield and the Meckbach factor R = γf/γb are compared with the available experimental data, and a good agreement is found. In addition, the effect of projectile energy and mass on the longitudinal and lateral distribution of the excitation points of the electrons emitted from front and back of Al target has been investigated.  相似文献   

12.
Very high fluence implantation of 7Li+ ions was used to promote the formation of a thin and high density 7Li target in the surface region of Al samples. The implanted volume was characterized by particle induced gamma-ray emission, Rutherford backscattering spectrometry, X-ray photoelectron spectroscopy and nuclear reaction analysis, revealing that the implanted surface is a combination of Li2CO3, metallic lithium, LiOH and C, with almost no Al present. Radiation damage effects by proton beams were studied by observing the evolution of the 7Li(p, α)4He nuclear reaction yield with the accumulated charge, at different proton energies, revealing high stability of the produced Li target.  相似文献   

13.
The thermal-neutron cross-section and the resonance integral for the 174Yb(n,γ)175Yb reaction were measured by the activation method using a 55Mn monitor as single comparator. Analytical grade MnO2 and Yb2O3 powder samples with and without a cylindrical 1 mm Cd shield box were irradiated in an isotropic neutron field obtained from three 241Am-Be neutron sources. The gamma-ray spectra from the activated samples were measured with a calibrated n-type high-purity Ge detector. The experimental results were corrected for the correction factors calculated for thermal and epithermal neutron self-shielding effects, epithermal neutron spectrum shape and gamma-ray self attenuation. Thus, the thermal neutron cross-section for the 174Yb(n,γ)175Yb reaction is found to be 126.5 ± 6.6 b, relative to that of the 55Mn monitor. The resonance integral value for the 174Yb(n,γ)175Yb reaction is found to be 59.6 ± 8.5 b, at cadmium cut-off energy of a 0.55 eV. Using the measured cadmium ratios of 55Mn and 174Yb, the result for resonance integral of the 174Yb(n,γ)175Yb reaction has also been obtained relative to the reference value of the 55Mn monitor. The present results for the 174Yb(n,γ)175Yb reaction agree well only with the recent experimental ones obtained by Kafala et al. [1] and De Corte and Simonits [2] within uncertainty limits. However, the previously reported experimental data for the thermal neutron cross-section for this reaction are distributed between 24 and 141 b, and similarly the experimental values for the resonance integral value also show a large scatter in the range of 30-69 b.  相似文献   

14.
Cross sections which is relevant in research of neutron transmutation doping of some important semiconducting materials were measured at neutron energies from 13.5 to 14.8 MeV for the reactions 75As(n, 2n)74As, 75As(n, p)75m+gGe, 75As(n, α)72m+gGa by activation relative to the 27Al(n, α)24Na reaction. Measurements were carried out by γ-detection using a coaxial HPGe detector. Natural realgar (As2S2) powder of 99.9% purity was used as samples. Fast neutrons were produced by the T(d, n)4He reaction. The results obtained are compared with existing data.  相似文献   

15.
The 10.3 h half life radionuclide 165Er, decaying by electron capture to stable 165Ho, is an excellent candidate for Auger-electron therapy. In the frame of a systematic study of charged particle production routes of 165Er, the excitation function of the 165Ho(p,n)165Er reaction was measured up to 35 MeV by using a stacked foil irradiation technique and X-ray spectroscopy. The measured excitation function shows a significant energy shift when compared to the only experimental dataset measured earlier and an acceptable agreement with the results of different nuclear reaction model codes. The thick target yields calculated from the excitation function at typical energies available at small cyclotrons (Ep = 11 MeV and Ep = 15 MeV) are 41 MBq/μAh = 11 GBq/C and 75 MBq/μAh = 21 GBq/C, respectively.  相似文献   

16.
For RBS (Rutherford Back Scattering) analysis, the quality of the beam is of premium importance because the depth profile resolution of the method is strongly dependent on the energy resolution of the probing beam. A magnetic analyzer, consisting of two 90 left-right bending magnets forming an achromatic doublet has been adapted to the Liege 20 MeV (proton) AVF (Azimuthal Varying Field) cyclotron. The energy resolution of that system has been measured by recording the resonance width of a 32S(p,p′γ)32S (3.38 MeV. p+ lab. energy). We have obtained a value of ΔE = ± 2 keV, reducing by a factor of 20 the natural dispersion of our cyclotron.We describe our magnetic analyzer system and present the results of our RBS measurements at energies up to 14 MeV α.  相似文献   

17.
The thermal-neutron cross-sections and the resonance integrals for the 179Hf(n,γ)180mHf and the 180Hf(n,γ)181Hf reactions have been measured by the activation method. The high purity Hf and Au metallic foils within and without a Cd shield case were irradiated in a neutron field of the Pohang neutron facility. The gamma-ray spectra from the activated foils were measured with a calibrated p-type high-purity Ge detector.In the experimental procedure, the thermal neutron cross-sections, σ0, and resonance integrals, I0, for the 179Hf(n,γ)180mHf and the 180Hf(n,γ)181Hf reactions have been determined relative to the reference values of the 197Au(n,γ)198Au reaction, with σ0 = 98.65 ± 0.09 barn and I0 = 1550 ± 28 barn. In order to improve the accuracy of the experimental results, the interfering reactions and necessary correction factors were taken into account in the determinations. The obtained thermal neutron cross-sections and resonance integrals were σ0 = 0.424 ± 0.018 barn and I0 = 6.35 ± 0.45 barn for the 179Hf(n,γ)180mHf reaction, and σ0 = 12.87 ± 0.52 barn and I0 = 32.91 ± 2.38 barn for the 180Hf(n,γ)181Hf reaction. The present results are in good agreement with recent measurements.  相似文献   

18.
The cross sections for the 175Lu(n, α)172Tm, 176Lu(n, α)173Tm and 175Lu(n, p)175m+gYb reactions have been measured in the neutron energy range of 13.5–14.8 MeV using the activation technique. The first data for 175Lu(n, α)172Tm reaction cross sections are presented. In our experiment, the fast neutrons were produced via the 3H(d, n)4He reaction on K-400 Neutron Generator at Chinese Academy of Engineering Physics (CAEP). Induced gamma activities were measured by a high-resolution (1.69 keV at 1332 keV for 60Co) gamma-ray spectrometer with high-purity germanium (HPGe) detector. Measurements were corrected for gamma-ray attenuations, random coincidence (pile-up), dead time and fluctuation of neutron flux. The neutron fluences were determined by the cross section of 93Nb(n, 2n)92mNb or 27Al(n, α)24Na reactions. The neutron energy in the measurement was by the cross section ratios of 90Zr(n, 2n)89m+gZr and 93Nb(n, 2n)92mNb reactions. The results were discussed and compared with experimental data found in the literature and with results of published empirical formulae.  相似文献   

19.
The thermal neutron capture cross section (σo) and the resonance integral (Io) of the 51V(n,γ)52V reaction were measured with an activation method to provide fundamental data for reactor calculation, activation analysis, and other theoretical and experimental uses concerning the interaction of neutron with matter. The vanadium and manganese samples were irradiated within and without a Cd shield case using a 20 Ci Am–Be neutron source. The activities of the samples were measured using gamma-ray spectroscopy. The thermal neutron capture cross section and the resonance integral were determined relative to the reference reaction 55Mn(n,γ)56Mn and the values obtained are 5.16 ± 0.19 barns and 2.53 ± 0.1 barns respectively. The previous measurements of the σo and Io of the reaction 51V(n,γ)52V were reviewed and the difference between the present values and the previous results were discussed.  相似文献   

20.
Heat deposition inside thick targets due to interaction of high energy protons (Ep ∼ GeV) has been estimated using an improved version of the Monte Carlo simulation code CASCADE.04.h. The results are compared with the available experimental data for thick targets of Be, Al, Fe, Cu, Pb and Bi at proton energies of 0.8 GeV, 1.0 GeV and 1.2 GeV. A more continuous heat deposition approach which has been adopted in CASCADE.04.h yields results which are in better agreement with the experimental data as compared to the ones from the earlier version of CASCADE.04. The results are also compared with the predictions of the FLUKA Monte Carlo code. Both CASCADE.04.h and FLUKA predictions are nearly similar for heavy targets and both agree with the experimental measurements. However, they do have differences in predictions for lighter targets where measurements also differ from the predictions. It is observed that the maximum heat loss in thick targets occurs at the beginning of the target due to increasing nuclear reaction contributions. This aspect is crucial in designing the window of a spallation neutron target employed in an accelerator driven sub-critical system (ADS) as this is the first material to be traversed by the proton beam and is subjected to the maximum temperature gradient. Optimization of the target-window parameters requires a careful estimation of heat deposition in the window region and this has been demonstrated through thermal hydraulic studies related to the design of a realistic lead bismuth eutectic (LBE) spallation neutron target for an ADS system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号