首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The present work is devoted to investigate the local atomic environment (of Zr, Y and O) as well as surface modifications associated with excess helium in the cubic phase of (1 0 0)-oriented Zr0.8Y0.2O1.9 single crystal substrates. Commercially available oxide crystals have been implanted at various fluences in the range 0.15-2.0 × 1016 He-atoms/cm2 using a 2.74 MeV He+ ion beam passing through a 8.0 μm Al foil. The microstructure and surface morphology of the irradiated surface are examined using atomic force microscopy (AFM). The local atomic environments of Zr, Y and O in the implanted layer are studied using synchrotron radiation and by extended X-ray absorption fine structure (EXAFS) measured at glancing angles to probe the implanted layer. From AFM studies it was observed that the surface roughness increases as fluence increases and above a critical fluence stage, small blister-like structures originating from helium bubbles are scattered on the irradiated surface. The radial distribution functions (RDFs), derived from EXAFS data at the Zr K-edge, have been found to evolve continuously as a function of ion fluence describing the atomic scale structural modifications in YSZ by helium implantation. From the pristine data, long range order (beyond the first- and second-shell) is apparent in the RDF spectrum. It shows several nearest neighbour peaks at about 2.1, 3.6, 4.3 and 5.4 Å. In the implanted specimens, all these peaks are greatly reduced in magnitude and their average positions are changed, typical of damaged material. A simple model taking into account only the existence of lattice vacancies has been used for the interpretation of measured EXAFS spectra.  相似文献   

2.
The present paper concentrates on tribological performance of Ti6Al4V alloy treated by helium plasma-based ion implantation with a voltage of −30 kV and a dose range of 1, 3, 6 and 9 × 1017 He/cm2. X-ray photoelectron spectroscopy (XPS), Transmission electron microscopy (TEM) and Atomic force microscopy (AFM) were used to characterize composition, structure and surface morphology, respectively. The variation of hardness with indenting depth was measured and tribological performance was evaluated. The uniform cavities with a diameter of several nanometers are formed in the helium-implanted layer on Ti6Al4V alloy. Helium implantation enhances the ingress of O, C and N and produces TiO2, Al2O3, TiC, TiN in the near surface layer on their removal from the vacuum and exposure to normal atmospheric condition. In the near surface layer, the hardness of implanted samples increases remarkably comparing with the untreated sample, and the maximum peak increasing factor is up to 2.9 for the sample implanted with 3 × 1017 He/cm2. A decrease in surface roughness, resulting from the leveling effect of sputtering and re-deposition during implantation, has also been observed. Comparing with the untreated sample, implanted samples have a good wear resistance property. And the maximum increase in wear resistance reaches over seven times that of the untreated one for the sample implanted with 3 × 1017 He/cm2. The wear mechanism of implanted samples is abrasive-dominated.  相似文献   

3.
Single crystal silicon samples were implanted at 140 keV by oxygen (16O+) ion beam to fluence levels of 1.0 × 1017, 2.5 × 1017 and 5.0 × 1017 cm−2 to synthesize buried silicon oxide insulating layers by SIMOX (separation by implanted oxygen) process at room temperature and at high temperature (325 °C). The structure and composition of the ion-beam synthesized buried silicon oxide layers were investigated by Fourier transform infrared (FTIR) and Rutherford backscattering spectroscopy (RBS) techniques. The FTIR spectra of implanted samples reveal absorption in the wavenumber range 1250-750 cm−1 corresponding to the stretching vibration of Si-O bonds indicating the formation of silicon oxide. The integrated absorption band intensity is found to increase with increase in the ion fluence. The absorption peak was rather board for 325 °C implanted sample. The FTIR studies show that the structures of ion-beam synthesized buried oxide layers are strongly dependent on total ion fluence. The RBS measurements show that the thickness of the buried oxide layer increases with increase in the oxygen fluence. However, the thickness of the top silicon layer was found to decrease with increase in the ion fluence. The total oxygen fluence estimated from the RBS data is found to be in good agreement with the implanted oxygen fluence. The high temperature implantation leads to increase in the concentration of the oxide formation compared to room temperature implantation.  相似文献   

4.
Two-detector coincidence system and mono-energetic slow positron beam has been applied to measure the Doppler broadening spectra for single crystals of SiO2, SiO2 films with different thickness thermally grown on single crystal of Cz-Si, and single crystal of Si without oxide film. Oxygen is recognized as a peak at about 11.85 × 10−3m0c on the ratio curves. The S parameters decrease with the increase of positron implantation energy for the single crystal of SiO2 and Si without oxide film. However, for the thermally grown SiO2-Si sample, the S parameters in near surface of the sample increase with positron implantation energy. It is due to the formation of silicon oxide at the surface, which lead to lower S value. S and W parameters vary with positron implantation depth indicate that the SiO2-Si system consist of a surface layer, a SiO2 layer, a SiO2-Si interface layer and a semi-infinite Si substrate.  相似文献   

5.
MeV Au irradiation leads to a shape change of polystyrene (PS) and SiO2 particles from spherical to ellipsoidal, with an aspect ratio that can be precisely controlled by the ion fluence. Sub-micrometer PS and SiO2 particles were deposited on copper substrates and irradiated with Au ions at 230 K, using an ion energy and fluence ranging from 2 to 10 MeV and 1 × 1014 ions/cm2 to 1 × 1015 ions/cm2. The mechanisms of anisotropic deformation of PS and SiO2 particles are different because of their distinct physical and chemical properties. At the start of irradiation, the volume of PS particles decrease, then the aspect ratio increases with fluence, whereas for SiO2 particles the volume remains constant.  相似文献   

6.
The synthesis of buried silicon nitride insulating layers was carried out by SIMNI (separation by implanted nitrogen) process using implantation of 140 keV nitrogen (14N+) ions at fluence of 1.0 × 1017, 2.5 × 1017 and 5.0 × 1017 cm−2 into 〈1 1 1〉 single crystal silicon substrates held at elevated temperature (410 °C). The structures of ion-beam synthesized buried silicon nitride layers were studied by X-ray diffraction (XRD) technique. The XRD studies reveal the formation of hexagonal silicon nitride (Si3N4) structure at all fluences. The concentration of the silicon nitride phase was found to be dependent on the ion fluence. The intensity and full width at half maximum (FWHM) of XRD peak were found to increase with increase in ion fluence. The Raman spectra for samples implanted with different ion fluences show crystalline silicon (c-Si) substrate peak at wavenumber 520 cm−1. The intensity of the silicon peak was found to decrease with increase in ion fluence.  相似文献   

7.
The temperature effect on the microstructure of the N+-ion implantation-induced Si3N4 buried layer was investigated. The underlying silicon nitride layers were formed in a Si (1 1 1) wafer after implantation of 50 keV nitrogen ions (fluence: 1 × 1017, 2 × 1017 and 5 × 1017 ions/cm2). It was observed that a continuous amorphous layer of about 200 nm thickness was formed in all implanted samples due to the irradiation damage. After 30 min annealing at 900 °C, poly-crystalline Si3N4 products were found by TEM examination in the specimen implanted with 5 × 1017 ions/cm2 dose. In the case of annealing at 1200 °C a continuous single-crystalline α-Si3N4 buried layer was formed indicating that the amorphous layer in the implanted samples could be transformed into three successive layers, which are amorphous SiO2, single-crystal α-Si3N4 and retained defects from surface to inner substrate, respectively.  相似文献   

8.
There are great interests in electrochromic (EC) technology for smart windows and displays over the last decade. The substrate, a conductive glass being coated indium tin oxide (ITO) thin films, deposited tungsten trioxide (WO3) using radio-frequency (RF) sputtering and implanted Ti by a metal-plasma ion implantation (MPII) in this study. The optical density (when the implanted dose is less than 2 × 1015 ions/cm2) is approximately 1.6 times the unimplanted Ti. At low implanted dose +6 valence tungsten ions improve optical density. At high implanted dose, low-valence tungsten ions reduce the optical density.  相似文献   

9.
Light emission from a silicon dioxide layer enriched with silicon has been studied. Samples used had structures made on thermally oxidized silicon substrate wafers. Excess silicon atoms were introduced into a 250-nm-thick silicon dioxide layer via implantation of 60 keV Si+ ions up to a fluence of 2 × 1017 cm−2. A 15-nm-thick Au layer was used as a top semitransparent electrode. Continuous blue light emission was observed under DC polarization of the structure at 8-12 MV/cm. The blue light emission from the structures was also observed in an ionoluminescence experiment, in which the light emission was caused by irradiation with a H2+ ion beam of energy between 22 and 100 keV. In the case of H2+, on entering the material the ions dissociated into two protons, each carrying on average half of the incident ion energy. The spectra of the emitted light and the dependence of ionoluminescence on proton energy were analyzed and the results were correlated with the concentration profile of implanted silicon atoms.  相似文献   

10.
Metallic and non-metallic ion beams can be used to modify the properties of wafer surfaces if accelerated at moderate energies. We developed a new “implantation machine” able to generate ions and to accelerate them up to 80 kV. The ion generation is achieved by a laser-plasma source which creates plasma in expansion. The device consists of a KrF excimer laser and a generating vacuum chamber made of stainless steel. The laser energy was 45 mJ/pulse with a power density of 2.25 × 108 W/cm2. The target was kept to positive voltage to accelerate the produced ions. The ion dose was estimated by a fast polarised Faraday cup. This machine was utilised to try synthesizing silicon nanocrystals in SiO2 matrix. Preliminary results of Si nanocrystals formation and the glancing-angle X-ray diffraction analyses are reported.  相似文献   

11.
It has been reported that elongated Au nanoparticles oriented parallel to one another can be synthesized in SiO2 by ion irradiation. Our aim was to elucidate the mechanism of this elongation. We prepared Au and Ag nanoparticles with a diameter of 20 nm in an SiO2 matrix. It was found that Au nanoparticles showed greater elongated with a higher flux of ion beam and with thicker SiO2 films. In contrast, Ag nanoparticles split into two or more shorter nanorods aligned end to end in the direction parallel to the ion beam. These experimental results are discussed in the framework of a thermal spike model of Au and Ag nanorods embedded in SiO2. The lattice temperature exceeds the melting temperatures of SiO2, Au and Ag for 100 ns after one 110 MeV Br10+ ion has passed through the middle of an Au or Ag nanorod.  相似文献   

12.
Ag nanoclusters embedded in silica glass matrix have been synthesized by high fluence ion implantation using both keV and MeV ion beams. In keV implantation case, optical absorption shows an intense surface plasmon resonance (SPR) peak corresponding to the Ag clusters formed in the matrix. Transmission electron microscopy (TEM) measurements carried out on identically implanted SiO2 thin films on a TEM catcher grid shows the presence of Ag nanoclusters of size around 4 nm in the matrix. However, for the MeV implantation case, the SPR peak appears in the optical absorption spectra only after air annealing the sample at 500 °C for one hour. For the annealed samples, TEM measurements show the presence of 6 nm sized Ag nanoclusters. On the other hand the as-implanted sample shows smaller nanoclusters with a lower particle density in the matrix. Interestingly, open aperture z-scan measurements carried out on keV implanted samples did not show any nonlinear absorption, while the MeV as-implanted as well as annealed samples showed nonlinear absorption. The nonlinear absorption coefficient of the MeV annealed sample is extracted from a fit to the z-scan data considering a three photon like absorption process.  相似文献   

13.
Implantation of Cr-ions in Fe70Co30 thin film have been performed to modify its structural and magnetic properties. From the XRD results, the lattice constant as well as the grain size of the film is increasing with the ion fluence. Cr-ions (1 × 1017 ions/cm2) reduces the coercivity of the film from 140(3) Oe to 44(3) Oe. Coercivity of the film follows the exponential decay as a function of Cr-ions fluence. 35 keV (projectile range 13.5 nm) and 100 keV Cr-ions (projectile range 34.3 nm) have been used to understand the effects of magnetic Cr-ions and the effects of ballistic collision cascade on the MOKE signal. Similar changes on the coercivity behaviour of the film implanted with these two energies have been observed. It appears that the implantation process creates a solid solution of Cr in FeCo without any other additional treatment in the film. After 5 × 1016 Cr-ions, film exhibit four fold magnetic anisotropy.  相似文献   

14.
AZ31 magnesium alloys were implanted with tantalum ions with doses of 1 × 1016, 5 × 1016 and 1 × 1017 ions/cm2, using a metal vapor vacuum arc (MEVVA) at an extraction voltage of 45 kV. Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) analysis suggested that tantalum ions implantation promoted the formation of the pre-oxidation layer and a new Ta2Al phase was formed in the implanted layer. Then, the oxidation kinetics of the implanted specimens was investigated by isothermal oxidation at 773 K in pure O2 up to 90 min. The results showed that after implantation treatments the oxidation resistance of the specimens was significantly improved and the specimen with the highest dose had the best oxidation resistance. Finally, the mechanism of the anti-oxidation effects was also discussed.  相似文献   

15.
The first wall of an inertial fusion energy reactor may suffer from surface blistering and exfoliation due to helium ion irradiation and extreme temperatures. Tungsten is a candidate for the first wall material. A study of helium retention and surface blistering with regard to helium dose, temperature, pulsed implantation, and tungsten microstructure was conducted to better understand what may occur at the first wall of the reactor. Single crystal and polycrystalline tungsten samples were implanted with 1.3 MeV 3He in doses ranging from 1019 m−2 to 1022 m−2. Implanted samples were analyzed by 3He(d,p)4He nuclear reaction analysis and 3He(n,p)T neutron depth profiling techniques. Surface blistering was observed for doses greater than 1021 He/m2. For He fluences of 5 × 1020 He/m2, similar retention levels in both microstructures resulted without blistering. Implantation and flash heating in cycles indicated that helium retention was mitigated with decreasing He dose per cycle.  相似文献   

16.
Ti6Al4V was treated by oxygen plasma-based ion implantation at the voltage pulses of −30 and −50 kV with a constant fluency of 0.6 × 1017 O/cm2. After implantation, the annealing in vacuum was applied to the implanted samples to control phase structure of the implanted layer. The higher voltage implantation forms nano-size rutile in the implanted layer, but the subsequent annealing at 600 °C induces the resolution of the previous rutile. Although, the lower voltage implantation does not lead to rutile, the annealing can precipitate anatase and rutile in the implanted layer. The higher voltage implantation results in a higher hardness of the implanted layer. The annealing at 500 °C leads to an apparent increase in hardness of the implanted layer, but the annealing at 600 °C induces a rapid decrease in hardness.  相似文献   

17.
We have studied the influence of the ion species, ion energy, fluence, irradiation temperature and post-implantation annealing on the formation of shallow dislocation loops in silicon, for fabrication of silicon light emitting diodes. The substrates used were (1 0 0) Si, implanted with 20-80 keV boron at room temperature and 75-175 keV silicon at 100 and 200 °C. The implanted fluences were from 5 × 1014 to 1 × 1015 ions/cm2. After irradiation the samples were processed for 15 s to 20 min at 950 °C by rapid thermal annealing. Structural analysis of the samples was done by transmission electron microscopy and Rutherford backscattering spectrometry. In all irradiations the silicon substrates were not amorphized, and that resulted in the formation of extrinsic perfect and faulted dislocation loops with Burgers vectors a/2〈1 1 0〉 and a/3〈1 1 1〉, respectively, sitting in {1 1 1} habit planes. It was demonstrated that by varying the ion implantation parameters and post-irradiation annealing, it is possible to form various shapes, concentration and distribution of dislocation loops in silicon.  相似文献   

18.
In the present paper we combined ion implantation and nanosphere lithography to regularly dope, by a mask-assisted process, a SiO2 substrate with rare earth ions (Er) by ion implantation and to fabricate by sputtering a plasmonic 2D periodic array of Au nanostructures on the silica surface spatially coupled to the implanted Er3+ ions. The aim of this work is to study how Er3+ emission at 1.5 μm can be affected by the interaction with a plasmonic nanostructure. In particular we have found a variation of the radiative lifetime of the Er3+ emission and a change from single exponential to bi-exponential of the luminescence intensity decay.  相似文献   

19.
In order to study the influence of cerium ion implantation on the aqueous corrosion behavior of zirconium, specimens were implanted with cerium ions with a fluence ranging from 1 × 1020 to 1 × 1021 ions/m2 at about 150 °C, using a MEVVA source at an extracted voltage of 40 kV. The valence and element penetration distribution of the surface layer were analyzed by X-ray photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES) respectively. The potentiodynamic polarization technique was employed to investigate the aqueous corrosion resistance of zirconium in a 1N H2SO4 solution. It was found that there was a remarkable improvement in the aqueous corrosion behavior of zirconium implanted with cerium ions compared with that of the as-received zirconium. The corrosion resistance improvement of the cerium-implanted zirconium is probably due to the addition of cerium oxide dispersoid into the zirconium matrix and oxidization protection.  相似文献   

20.
Commercial O-face (0 0 0 1) ZnO single crystals were implanted with 200 keV Ar ions. The ion fluences applied cover a wide range from 5 × 1011 to 7 × 1016 cm−2. The implantation and the subsequent damage analysis by Rutherford backscattering spectrometry (RBS) in channelling geometry were performed in a special target chamber at 15 K without changing the target temperature of the sample. To analyse the measured channelling spectra the computer code DICADA was used to calculate the relative concentration of displaced lattice atoms.Four stages of the damage evolution can be identified. At low ion fluences up to about 2 × 1013 cm−2 the defect concentration increases nearly linearly with rising fluence (stage I). There are strong indications that only point defects are produced, the absolute concentration of which is reasonably given by SRIM calculations using displacement energies of Ed(Zn) = 65 eV and Ed(O) = 50 eV. In a second stage the defect concentration remains almost constant at a value of about 0.02, which can be interpreted by a balance between production and recombination of point defects. For ion fluences around 5 × 1015 cm−2 a second significant increase of the defect concentration is observed (stage III). Within stage IV at fluences above 1016 cm−2 the defect concentration tends again to saturate at a level of about 0.5 which is well below amorphisation. Within stages III and IV the damage formation is strongly governed by the implanted ions and it is appropriate to conclude that the damage consists of a mixture of point defects and dislocation loops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号