首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study of the effects of ion irradiation on the surface mechanical behavior and shrinkage of organic/inorganic modified silicate thin films was performed. The films were synthesized by sol-gel processing from tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES) precursors and spin-coated onto Si substrates. The sol viscosity and the spin velocity were adjusted so that the films produced had a final thickness ranging from 580 to 710 nm after heat treatment. The ion species and incident energies used were selected such that the projected ion range was greater than the film thickness, resulting in fully irradiated films. After heat treatment at 300 °C for 10 min, the films were irradiated with 125 keV H+, 250 keV N2+ and 2 MeV Cu+ ions with fluences ranging from 1 × 1014 to 1 × 1016 ions/cm2. Both hardness and reduced elastic modulus were seen to exhibit a monotonic increase with fluence for all three ion species. Also, H loss was found to increase monotonically with increase in fluence, while the film thickness was found to decrease with increase in fluence.  相似文献   

2.
We present measurements of secondary electron emission from Cu induced by low energy bombardment (1-5 keV) of noble gas (He+, Ne+ and Ar+) and Li+ ions. We identify different potential and kinetic mechanisms and find the presence of high energetic secondary electrons for a couple of ion-target combinations. In order to understand the presence of these fast electrons we need to consider the Fermi shuttle mechanism and the different ion neutralization efficiencies.  相似文献   

3.
The differential cross-sections of the 10B(d,p0,1,2,3,4-5,6) reactions for the determination of the depth distribution of boron in near-surface layers of materials have been determined in the projectile energy region Ed,lab = 900-2000 keV. The experiment was carried out in energy steps of 25 keV and for eight detector angles between 135° and 170° (in steps of 5°). The obtained experimental data are suitable for nuclear reaction analysis (NRA) studies. A qualitative discussion of the observed cross-section variations through the strong influence of overlapping resonances in the d + 10B system is also presented.  相似文献   

4.
Structural and compositional modification of InSb(0 0 1) single crystal surfaces induced by oblique incidence 2-5 keV Ar and Xe ion irradiation have been investigated by means of scanning tunneling and atomic force microscopies, and time-of-flight mass spectroscopy of secondary ion emission. In general, ion-induced patterns (networks of nanowires, or ripples) are angle of incidence- and fluence-dependent. Temperature dependences (from 300 to 600 K) of the RMS roughness and of the ripple wavelength have been determined for the samples bombarded with various fluences. Secondary ion emission from an InSb(0 0 1) surface exposed to 4.5 keV Ar+ ions has been investigated with a linear TOF spectrometer working in a static mode. Mass spectra of the sputtered In+, Sb+ and In2+ secondary ions have been measured both for the non-bombarded (0 0 1) surface and for the surface previously exposed to a fluence of 1016 ions/cm2. In+ and In2+ intensities for the irradiated sample are much higher in comparison to the non-bombarded one, whereas Sb+ ions show a reversed tendency. This behavior suggests a significant In-enrichment at the InSb(0 0 1) surface caused by the ion bombardment.  相似文献   

5.
Single crystals of sapphire (α-Al2O3) were irradiated at GANIL with 0.7 MeV/amu xenon ions corresponding to an electronic stopping power of 21 keV/nm. Several fluences were applied between 5 × 1011 and 2 × 1014 ions/cm2. Irradiated samples were characterized using optical absorption spectroscopy. This technique exhibited the characteristic bands associated with F and F+ centers defects. The F centers density was found to increase with the fluence following two different kinetics: a rapid increase for fluences less than 1013 ions/cm2 and then, a slow increase for higher fluences. For fluences less than 1013 ions/cm2, results are in good agreement with those obtained by Canut et al. [B. Canut, A. Benyagoub, G. Marest, A. Meftah, N. Moncoffre, S.M.M. Ramos, F. Studer, P. Thévenard, M. Toulemonde, Phys. Rev. B 51 (1995) 12194]. In the fluences range: 1013-1014 ions/cm2, the F centers defects creation process is found to be different from the one evidenced for fluences less than 1013 ions/cm2.  相似文献   

6.
High temperature helium and deuterium implantation on tungsten has been studied using the University of Wisconsin inertial electrostatic confinement device. Helium or deuterium ions from a plasma source were driven into polished tungsten powder metallurgy samples. Deuterium implantation did not damage the surface of the specimens at elevated temperatures (∼1200 °C). Helium implantation resulted in a porous surface structure above 700 °C. A helium fluence scan, ion energy scan, and temperature scan were all completed. With 30 keV ions, the pore formation started just below 4 × 1016 He+/cm2. The pore size increased and the pore density decreased with increasing fluence and temperature. The energy scan from 20 to 80 keV showed no consistent trend.  相似文献   

7.
Electrical properties of silicon diodes with p+n junctions irradiated with 197Au+26 swift heavy ions (energy E = 350 MeV, fluences of 107 cm−2 and 108 cm−2) and silicon diodes irradiated with electrons (energy E = 3.5 MeV, fluences of 1015 cm−2, 5 × 1015 cm−2 and 1016 cm−2) have been investigated. Frequency dependences of the impedance, current-voltage characteristics and switching characteristics of these devices have been studied. Irradiation of the diodes with 197Au+26 ions at a fluence of 108 cm−2 leads to the formation of a quasi-continuous layer of irradiation-induced defects that enable a combination of characteristics such as a reverse resistance recovery time and direct voltage drop that are better than those for electron-irradiated diodes. Still, the irradiation of high-energy ions results in an increase in recombination currents that are larger than those obtained with electron irradiation, and causes more complicated frequency dispersion of the diode parameters.  相似文献   

8.
Among the attempts to measure particles produced in the cold fusion of deuterium in palladium metal is the mass spectrometric observation of tritium. An experiment which has been reported in the popular press involves attaching a hollow Pd electrode to a vacuum chamber and measuring the tritium produced during electrolysis using a mass spectrometer. We present data demonstrating that mass 5 and 6, which could be mistaken for the ions DT+ and T2 +, can arise from ion-molecule reactions in the ionizer of the mass spectrometer giving the ions HD2 + and D3 +. With H2 and D2 present in the vacuum chamber, there are at least eight reactions which lead to these triatomic species, and these may contribute to a complex time and pressure dependence of the signals.  相似文献   

9.
Interference structures in the ejected electron spectra for 30 MeV O5,8+ + O2 are investigated. The measured electron yields were studied for electron energies from 5 to 400 eV and observation angles of 30°, 60°, 90°, 120° and 150° with respect to the incident beam direction. Experimental molecular cross-sections were normalized to theoretical molecular one-center cross-sections revealing oscillatory structures suggestive of secondary interferences as evidenced by the independence on the observation angle. An oscillation interval for 30 MeV O5,8+ + O2 of Δk ∼ 4 a.u. is found, a value two times larger than that previously observed for 3 MeV H+ + N2. No obvious evidence for primary Young-type interferences was seen.  相似文献   

10.
Ag ions with four kinds of energies were implanted into silica to doses of 5 × 1016 and 1 × 1017 ions/cm2, respectively. Hollow Ag nanoclusters were observed in the 1 × 1017 Ag+ ions/cm2 implanted samples with energies of 150 and 200 keV. The evolution of hollow nanoclusters during annealing was carried out by in situ transmission electron microscopy observation. The energy dependence for the formation of hollow nanoclusters is studied. A potential mechanism for the formation of irradiation-induced nanovoids in nanoclusters is discussed.  相似文献   

11.
Ion irradiation is an effective method to control the morphology, size and distribution of metal nanoclusters in substrates. In this work, Ag nanoclusters embedded in silica by 200 keV Ag+ ion implantation were irradiated at room temperature with Ar+ ions at 200 keV and 500 keV to different fluences. After irradiation, a transmission electron microscopy (TEM) study revealed that nanovoids are formed in the larger Ag nanoclusters. With the increase of fluence and energy of the Ar+ ions, the number and average size of the nanovoids grow combining with increases in the average size of the larger Ag nanoclusters within a projected range. During the ion irradiation process, the electronic energy and nuclear energy loss of the Ar+ ions determine the size of the hollow Ag nanoclusters and the change of the size and distribution of Ag nanoclusters in silica, leading to changes in the optical absorption spectra.  相似文献   

12.
Differential cross sections of the 32S(d,p0,1,2,3,4-6,7) reactions were determined for deuteron energies Elab = 1975-2600 keV (in steps of 25 keV) and for detector angles between 140-170° in steps of 10°. A comparison of the experimental data with the existing ones and possible applications to nuclear reaction analysis (NRA) studies are discussed.  相似文献   

13.
The thermoluminescent response of CaF2:Tm after exposure to 60Co γ-rays at doses from 0.44 Gy to 8.75 kGy and to low fluences (105 ∼ 108 cm−2) of 25 and 40 MeV 1H, 75 and 120 MeV 3He, 180, 300 and 480 MeV 12C, 400 MeV 16O and 800 MeV 20Ne ion beams, spanning a LET interval up to about 500 keV/μm, has been investigated. A careful deconvolution analysis of the glow curve has been performed in order to obtain information for individual peaks. The region of linear response to gammas extends up to ≈1 Gy, while that for ions includes the complete dose interval covered in the study (up to ≈1.3 Gy). The ratio between the high- and low-temperature structures in the glow curve is correlated with radiation quality and dependence on ion identity, besides LET, is strongly suggested by the data. The thermoluminescent efficiency to ion exposure, with respect to irradiation with 60Co γ-rays, shows a different dependence on LET for each of the peaks. In general terms, the efficiency reaches a maximum between 1.2 and 1.4 near 6 keV/μm and decreases for higher LET. Peak 3 displays a unique trend, its relative efficiency is always less than 1.0 and shows a strong monotonic inverse dependence with LET.  相似文献   

14.
In this work the D(d,n)3He and 9Be(d,n)10B reactions have been studied in a low-energy regime as neutron sources for skin tumor treatment in the frame of accelerator-based BNCT (AB-BNCT). The total neutron production and the energy and angular distributions for each reaction at different bombarding energies and for the thick targets considered (TiD2, Be) have been determined using the available data in the literature. From this information, a feasibility study has been performed by means of MCNP simulations. The thermal, epithermal and fast neutron fluxes and doses at skin tumor positions (loaded with 40 ppm 10B) which are located on a whole-body human phantom have been simulated for different D2O moderator depths. The best-case performance shows that a high tumor control probability (TCP) of 99% corresponding to a weighted dose in tumor of 40 Gy can be reached at the tumor position keeping the weighted dose in healthy tissue below 12.5 Gy, by means of the 9Be(d,n)10B reaction at 1.1 MeV for a deuteron current of 20 mA and a 30 cm D2O moderator in 52 min. The availability of low-energy neutrons in the 9Be(d,n)10B reaction from the population of excited levels between 5.1 to 5.2 MeV in 10B and the convenience of a thin beryllium target are discussed.As a complement concerning alternatives to the Li(metal) + p reaction, the neutron yield of refractory lithium compounds (LiH, Li3N and Li2O) were calculated and compared with a Li metal target.  相似文献   

15.
Selected charged particle induced reactions are used to monitor the actual parameters of bombarding particle beams. One of these reactions is natTi(d, x)48V for which recommended cross section data are available in one of the databases of the International Atomic Energy Agency (http://www-nds.iaea.or.at/medical/). This database contains all together 22 monitor reactions for practical applications covering energy up to 100 MeV depending on the reactions. In the case of the natTi(d, x)48V reaction recommended data are given in the 9-50 MeV energy interval because at the time of creation not precise enough experimental data were available to recommend values from threshold up to 9 MeV. In this work we measured the excitation function in this relevant low energy range, collected new experimental data and suggest high confidence recommended values for the missing low energy part of the monitor excitation function.  相似文献   

16.
The existence states of deuterium in LiAlO2 were analyzed by in situ IR absorption spectroscopy during irradiation with 3 keV at room temperature. Multiple IR absorption peaks that were related to O-D stretching vibrations were observed, mainly at 2650 cm−1 (O-Dα), 2600 cm−1 (O-Dβ), and 2500 cm−1 (O-Dγ). The O-Dα was assigned to the surface O-D. The O-Dβ and O-Dγ were interpreted as two distinct O-D states for three candidates: O-D of substitutional D+ for Li+; O-D of substitutional D+ for Al3+; and O-D of interstitial D+. O-Dβ was the dominant O-D state for deuterium irradiated into LiAlO2, and had higher stability than O-Dγ. Heating after ion irradiation led to the desorption of D2 and an increase in the intensity of O-Dβ, which implies that some of the deuterium irradiated into LiAlO2 exists in non-O-D states, such as D captured by F centers.  相似文献   

17.
A direct Monte Carlo program has been developed to calculate the backward (γb) and forward (γf) electron emission yields from 20 nm thick Al foil for impact of C+, Al+, Ar+, Cu+ and Kr+ ions having energies in the range of 0.1-10 keV/amu. The program incorporates the excitation of target electrons by projectile ions, recoiling target atoms and fast primary electrons. The program can be used to calculate the electron yields, distribution of electron excitation points in the target and other physical parameters of the emitted electrons. The calculated backward electron emission yield and the Meckbach factor R = γf/γb are compared with the available experimental data, and a good agreement is found. In addition, the effect of projectile energy and mass on the longitudinal and lateral distribution of the excitation points of the electrons emitted from front and back of Al target has been investigated.  相似文献   

18.
Gold nanodispersed targets with islands-grains sized 2-30 nm were irradiated by Ar7+ ions with the energy of 45.5 MeV and (dE/dx)e = 14.2 keV/nm in gold. The desorbed gold nanoclusters were studied by TEM method. For all the targets desorption of intact gold nanoclusters is observed. However, for inelastic stopping of monatomic Ar ions in gold of 14.2 keV/nm desorption of nanoclusters is observed only up to ∼25 nm. The yield of the desorbed nanoclusters considerably decreases from 3 to 0.02 cluster/ion with the increase of the mean size of the desorbed nanoclusters from 3 to 14.2 nm. The results are discussed.  相似文献   

19.
For RBS (Rutherford Back Scattering) analysis, the quality of the beam is of premium importance because the depth profile resolution of the method is strongly dependent on the energy resolution of the probing beam. A magnetic analyzer, consisting of two 90 left-right bending magnets forming an achromatic doublet has been adapted to the Liege 20 MeV (proton) AVF (Azimuthal Varying Field) cyclotron. The energy resolution of that system has been measured by recording the resonance width of a 32S(p,p′γ)32S (3.38 MeV. p+ lab. energy). We have obtained a value of ΔE = ± 2 keV, reducing by a factor of 20 the natural dispersion of our cyclotron.We describe our magnetic analyzer system and present the results of our RBS measurements at energies up to 14 MeV α.  相似文献   

20.
Highly c-axis orientation ZnO thin films with hundreds nanometers in thickness have been deposited on (1 0 0) Si substrate by RF magnetron sputtering. These films are implanted at room temperature by 80 keV N-ions with fluences from 5.0 × 1014 to 1.0 × 1017 ions/cm2, implanted by 400 keV Xe-ions with 2.0 × 1014 to 2.0 × 1016 ions/cm2, irradiated by 3.64 MeV Xe-ions with 1.0 × 1012 to 1.0 × 1015 ions/cm2, or irradiated by 308 MeV Xe-ions with 1.0 × 1012 to 5.0 × 1014 ions/cm2, respectively. Then the ZnO films are investigated using a Raman spectroscopy. The obtained Raman spectra show that a new Raman peak located at about 578 cm−1 relating to simple defects or disorder phase appears in all ZnO films after ion implantation/irradiation, a new Raman peak at about 275 cm-1 owing to N-activated zinc-like vibrations is observed in the N-implanted samples. Moreover, a new Raman peak at about 475 cm−1 is only seen in the samples after 400 keV and 3.64 MeV Xe-ions bombardment. The area intensity of these peaks increases with increasing ion fluence. The effects of ion fluence, element chemical activity, atom displacements induced by nuclear collisions as well as energy deposition on the damage process of ZnO films under ion implantation/irradiation are discussed briefly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号