首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-resolution Rutherford backscattering spectroscopy (HRBS)/channeling techniques have been utilized for a detailed characterization of ultra-thin indium tin oxide (ITO) films and to probe the nature of the interface between the ITO film and the Si(0 0 1) substrate. Channeling studies provide a direct measure of the lattice strain distribution in the crystalline Si substrate in the case of amorphous over layers. The measurements on DC magnetron sputtered ITO films have been carried out using the recently installed HRBS facility at the Centre for Ion Beam Applications (CIBA). The thickness of the ultra-thin (∼9.8 nm) ITO films was calculated from the HRBS spectra having an energy resolution of about 1.4 keV at the superimposed leading (In + Sn) edge of the ITO film. The films were near stoichiometric and the interface between ITO film and Si was found to include a thin SiOx transition layer. The backscattering yields from (In + Sn) of ITO were equal in random and channeling directions, thereby revealing the non-crystalline nature of the film. Angular scans of HRBS spectra around the off-normal [1 1 1] axis clearly showed a shift in the channeling minimum indicative of compressive strain of the Si lattice at the SiOx/Si interface. The observed strain was about 0.8% near the interface and decreased to values below our detection limits at a depth of ∼3 nm from the SiOx/Si interface.  相似文献   

2.
We have recently synthesized “stuffed” (i.e., excess Lu) Lu2(Ti2−xLux)O7−x/2 (x = 0, 0.4 and 0.67) compounds using conventional ceramic processing. X-ray diffraction measurements indicate that stuffing more Lu3+ cations into the oxide structure leads eventually to an order-to-disorder (O-D) transition, from an ordered pyrochlore to a disordered fluorite crystal structure. At the maximum deviation in stoichiometry (x = 0.67), the Lu3+ and Ti4+ ions become completely randomized on the cation sublattices, and the oxygen “vacancies” are randomized on the anion sublattice. Samples were irradiated with 400 keV Ne2+ ions to fluences ranging from 1 × 1015 to 1 × 1016 ions/cm2 at cryogenic temperatures (∼77 K). Ion irradiation effects in these samples were examined by using grazing incident X-ray diffraction. The results show that the ion irradiation tolerance increases with disordering extent in the non-stoichiometric Lu2(Ti2−xLux)O7−x/2.  相似文献   

3.
A study of the effects of ion irradiation of hybrid organic/inorganic modified silicate thin films on their mechanical properties is presented. NaOH catalyzed SiNawOxCyHz thin films were synthesized by sol-gel processing from tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES) precursors and spin-coated onto Si substrates. After drying at 300 °C, the films were irradiated with 125 keV H+ or 250 keV N2+ at fluences ranging from 1 × 1014 to 2.5 × 1016 ions/cm2. Nanoindentation was used to characterize the films. Changes in hardness and reduced elastic modulus were examined as a function of ion fluence and irradiating species. The resulting increases in hardness and reduced elastic modulus are compared to similarly processed acid catalyzed silicate thin films.  相似文献   

4.
Thin films of Fe3O4 have been deposited on single crystal MgO(1 0 0) and Si(1 0 0) substrates using pulsed laser deposition. Films grown on MgO substrate are epitaxial with c-axis orientation whereas, films on Si substrate are highly 〈1 1 1〉 oriented. Film thicknesses are 150 nm. These films have been irradiated with 200 MeV Ag ions. We study the effect of the irradiation on structural and electrical transport properties of these films. The fluence value of irradiation has been varied in the range of 5 × 1010 ions/cm2 to 1 × 1012 ions/cm2. We compare the irradiation induced modifications on various physical properties between the c-axis oriented epitaxial film and non epitaxial but 〈1 1 1〉 oriented film. The pristine film on Si substrate shows Verwey transition (TV) close to 125 K, which is higher than generally observed in single crystals (121 K). After the irradiation with the 5 × 1010 ions/cm2 fluence value, TV shifts to 122 K, closer to the single crystal value. However, with the higher fluence (1 × 1012 ions/cm2) irradiation, TV again shifts to 125 K.  相似文献   

5.
The SHI irradiation induced effects on magnetic properties of MgB2 thin films are reported. The films having thickness 300-400 nm, prepared by hybrid physical chemical vapor deposition (HPCVD) were irradiated by 200 MeV Au ion beam (S∼ 23 keV/nm) at the fluence 1 × 1012 ion/cm2. Interestingly, increase in the transition temperature Tc from 35.1 K to 36 K resulted after irradiation. Substantial enhancement of critical current density after irradiation was also observed because of the pinning provided by the defects created due to irradiation. The change in surface morphology due to irradiation is also studied.  相似文献   

6.
The surface of an ionic liquid, trimethylpropylammonium bis(trifluoromethanesulfonyl)imide ([TMPA] [TFSI]), is observed by high-resolution Rutherford backscattering spectroscopy (HRBS). The composition depth profiles are derived from the observed HRBS spectra through spectrum simulation. The observed composition is in good agreement with the stoichiometric composition at depths larger than ∼1 nm. The observed composition profiles, however, show pronounced structures at the surface. Fluorine profile has a sharp peak at ∼0.1 nm and a broad peak at ∼1.0 nm. The sulfur profile also has a peak at ∼0.35 nm. These results indicate that the molecules show preferred orientations at the surface. From the observed profiles, it was concluded that the C1 conformer of the [TFSI] anion is dominant over the C2 conformer at the surface in contrast to bulk, where the C2 conformer is known to be dominant. It was also found that C1 conformers are oriented with their CF3 groups pointing toward the vacuum in the outermost molecular layer.  相似文献   

7.
The three single layer Ce3Sb10 thin films were grown on silicon dioxide and quartz (suprasil) substrates with thicknesses of 297, 269 and 70 nm using ion beam assisted deposition (IBAD) technique. The high-energy cross plane Si ion bombardments with constant energy of 5 MeV have been performed with varying fluence from 1 × 1012, 1 × 1013, 1 × 1014, 1 × 1015 ions/cm2. The Si ions bombardment modified the thermoelectric properties of films as expected. The fluence and temperature dependence of cross plane thermoelectric parameters that are Seebeck coefficient, electrical and thermal conductivities were determined to evaluate the dimensionless figure of merit, ZT. Rutherford backscattering spectrometry (RBS) enabled us to determine the elemental composition of the deposited materials and layer thickness of each film.  相似文献   

8.
Interference structures in the ejected electron spectra for 30 MeV O5,8+ + O2 are investigated. The measured electron yields were studied for electron energies from 5 to 400 eV and observation angles of 30°, 60°, 90°, 120° and 150° with respect to the incident beam direction. Experimental molecular cross-sections were normalized to theoretical molecular one-center cross-sections revealing oscillatory structures suggestive of secondary interferences as evidenced by the independence on the observation angle. An oscillation interval for 30 MeV O5,8+ + O2 of Δk ∼ 4 a.u. is found, a value two times larger than that previously observed for 3 MeV H+ + N2. No obvious evidence for primary Young-type interferences was seen.  相似文献   

9.
The defects and disorder in the thin films caused by MeV ions bombardment and the grain boundaries of these nanoscale clusters increase phonon scattering and increase the chance of an inelastic interaction and phonon annihilation. We prepared the thermoelectric generator devices from 100 alternating layers of SiO2/SiO2 + Cu multi-nano layered superlattice films at the total thickness of 382 nm and 50 alternating layers of SiO2/SiO2 + Au multi-nano layered superlattice films at the total thickness of 147 nm using the physical vapor deposition (PVD). Rutherford Backscattering Spectrometry (RBS) and RUMP simulation have been used to determine the stoichiometry of the elements of SiO2, Cu and Au in the multilayer films and the thickness of the grown multi-layer films. The 5 MeV Si ions bombardments have been performed using the AAMU-Center for Irradiation of Materials (CIM) Pelletron ion beam accelerator to make quantum (nano) dots and/or quantum (quantum) clusters in the multilayered superlattice thin films to decrease the cross plane thermal conductivity, increase the cross plane Seebeck coefficient and cross plane electrical conductivity. To characterize the thermoelectric generator devices before and after Si ion bombardments we have measured Seebeck coefficient, cross-plane electrical conductivity, and thermal conductivity in the cross-plane geometry for different fluences.  相似文献   

10.
Atomic layer deposition (ALD) is currently a widespread method to grow conformal thin films with a sub-nm thickness control. By using ALD for nanolaminate oxides, it is possible to fine tune the electrical, optical and mechanical properties of thin films. In this study the elemental depth profiles and surface roughnesses were determined for Al2O3 + TiO2 nanolaminates with nominal single-layer thicknesses of 1, 2, 5, 10 and 20 nm and total thickness between 40 nm and 60 nm. The depth profiles were measured by means of a time-of-flight elastic recoil detection analysis (ToF-ERDA) spectrometer recently installed at the University of Jyväskylä. In TOF-E measurements 63Cu, 35Cl, 12C and 4He ions with energies ranging from 0.5 to 10 MeV, were used and depth profiles of the whole nanolaminate film could be analyzed down to 5 nm individual layer thickness.  相似文献   

11.
Optically stimulated luminescence (OSL) of Lu2SiO5:Ce powder (Phosphor Technology Ltd., UK) has been measured by Risø TL/OSL Reader (TL-DA-15). Upon blue photon stimulation (λex ∼470 nm) the material shows strong OSL signal that can detect β-irradiation right up to the dose of ∼0.2 Gy.A brief discussion on this finding is presented by comparing the thermoluminescence of the system with and without optical stimulation. The two key important parameters namely, trap-depth (E) and frequency factor (s) of the main peaks that occur at 85 and 232 °C are determined.  相似文献   

12.
A 2.3 kJ pulsed plasma focus device was used to prepare thin films of nc-(Ti,Al)N/a-Si3N4 at room temperature. The plasma focus device, fitted with copper anode encapsulated with Ti0.5Al0.5 anode, was operated with nitrogen as the filling gas. Films were deposited with various number of focus shots, at 90 mm from top of the anode and at zero angular position with respect to anode axis. XRD patterns show the growth of polycrystalline (Ti,Al)N thin films with orientations in the (1 1 1), (2 0 0), (2 2 0) and (3 1 1) crystallographic planes. Behavior of lattice constant, grain size and film roughness of deposited film as a function of variation in number of focus shots is discussed. SEM micrographs of film deposited with 15 number of focus shots exhibit well-developed net like structure of nc-(Ti,Al)N/a-Si3N4 and possibly nc-(Ti,Al)N/a-Si3N4/a-AlN or nc-TiN/a-Si3N4/a-AlN. Surface Roughness ranging 64 nm to 89 nm was also observed.  相似文献   

13.
Silicon ions were implanted into SiO2 thin films with various doses and energies. For the films implanted with various ion doses the photoluminescence (PL) intensity of 470 nm firstly increased with the increase of Si ion dose, which is similar to the variation trend of displacement per atom (DPA) number during ion radiation. Further increasing Si ion dose the PL intensity of 470 nm decreased gradually since the neutral oxygen vacancy centers were destroyed. For the samples implanted with different energy the variation trend of PL intensity for 470 nm peak is similar to the result of DPA under different radiation energy according to SRIM2006 simulation. With the increase of radiation energy a new PL peak at 550 nm appeared because of the variation of defect type. Combining with the simulation results and PL spectra the radiation effect on Si/SiO2 thin films were proposed.  相似文献   

14.
Solid state reactions of UO2 and ZrO2 in mild oxidizing condition followed by reduction at 1673 K showed enhanced solubility up to 35 mol% of zirconium in UO2 forming cubic fluorite type ZryU1−yO2 solid solution. The lattice parameters and O/M (M = U + Zr) ratios of the solid solutions, ZryU1−yO2+x, prepared in different gas streams were investigated. The lattice parameters of these solid solutions were expressed as a linear equation of x and y: a0 (nm) = 0.54704 − 0.021x - 0.030y. The oxidation of these solid solutions for 0.1 ? y ? 0.2 resulted in cubic phase MO2+x up to700 K and single orthorhombic zirconium substituted α-U3O8 phase at 1000 K. The kinetics of oxidation of ZryU1−yO2 in air for y = 0-0.35 were also studied using thermogravimetry. The specific heat capacities of ZryU1−yO2 (y = 0-0.35) were measured using heat flux differential scanning calorimetry in the temperature range of 334-860 K.  相似文献   

15.
Germanium nanoparticles embedded in SiO2 matrix were prepared by atom beam sputtering on a p-type Si substrate. The as-deposited films were annealed at temperatures of 973 and 1073 K under Ar + H2 atmosphere. The as-deposited and annealed films were characterized by Raman, X-ray diffraction and Fourier transform infrared spectroscopy (FTIR). Rutherford backscattering spectrometry was used to quantify the concentration of Ge in the SiO2 matrix of the composite thin films. The formation of Ge nanoparticles were observed from the enhanced intensity of the Ge mode in the Raman spectra as a function of annealing, the appearance of Ge(3 1 1) peaks in the X-ray diffraction data and the Ge vibrational mode in the FTIR spectra. We have irradiated the films using 100 MeV Au8+ ions with a fluence of 1 × 1013 ions/cm2 and subsequently studied them by Raman and FTIR. The results are compared with the ones obtained by annealing.  相似文献   

16.
Indium based transparent conducting oxides doped with magnetic elements have been studied intensively in recent years with a view to develop novel ferromagnetic semiconductors for spin-based electronics. In the present work, we have grown manganese doped indium tin oxide (Mn:ITO) thin films, onto Si and Si/SiO2 substrates by DC reactive sputtering of a composite target containing indium-tin alloy and manganese, in a gas mixture of oxygen and argon. Glancing angle X-ray diffraction (GXRD) studies reveal the polycrystalline nature of the films. Magnetic measurements carried out using vibrating sample magnetometer (VSM) suggest that the films are ferromagnetic at room temperature, with a saturation magnetization of ∼22.8 emu/cm3. The atomic percentages of In, Sn, Mn and O, as estimated using Rutherford backscattering spectrometry (RBS) are 37.0, 4.0, 1.6 and 57.4, respectively. RBS measurements reveal that the interface of the films with Si substrate has a ∼30 nm thick intermediate layer. This layer consists of oxygen, silicon, indium, tin and manganese, in the ratio 1:0.56:0.21:0.07:0.03, indicative of diffusion of elements across the interface. The films on Si/SiO2, on the other hand, have a sharp interface.  相似文献   

17.
Molecular oxygen and hydrogen ions were scattered at grazing incidence from various thin Al2O3 films. The energy of incident particles was varied from 390 to 1000 eV. For scattered positive oxygen ions, negative ion fractions of up to 17% were recorded. For scattered positive hydrogen ions, the negative ion fractions reached up to 2%. These findings qualify thin films of Al2O3 as possible candidates for use as charge state conversion surfaces in neutral particle sensing instruments, which will work in space.  相似文献   

18.
Thin polystyrene (PS) films (Mw = 234,000) are spin coated on silicon substrates with a Chromium (Cr) layer as a sandwiched metallic layer that produces photoelectrons (by synchrotron X-rays). Earlier studies on synchrotron radiation damage in PS films, without metallic layer, have shown a decrease in interfacial roughness and a slight increase in thickness, at temperatures below Tg [A.G. Richter, R. Guico, K. Shull, J. Wang, Macromolecules 39 (2006) 1545]. Similar trend is observed in the presence of a thin layer of Cr film (∼2.5 nm). For the sample with a thick Cr layer the opposite effect was observed for X-ray radiation damage. For the 50 nm thick Cr film system thickness of the polystyrene film decreased by ≈4.4% which amount to a loss of about 0.021 nm3 per incident photon in the fluence range studied (6.8 × 109 photons mm−2 to 1 × 1014 photons mm−2). Interfacial roughness also increased from about 1.0 nm to 2.1 nm in the process. These effects are explained by invoking the presence of more number of X-ray induced photoelectrons and secondary electrons for 50 nm thick Cr film case compared to 2.5 nm thin film case.  相似文献   

19.
Ion beam processing of organic/inorganic thin films has been shown to be an effective means in converting polymeric films into their final ceramic-like state. In this study, hybrid sol-gel derived thin films based on TEOS (tetraethylorthosilicate) Si(OC2H5)4 and MTES (methyltriethoxysilane) CH3Si(OC2H5)3 were prepared and deposited on Si substrates by spin coating. After the films were allowed to air dry, they were heat treated at 300 °C for 10 min. Ion irradiation was performed at room temperature using 125 keV H+ and 250 keV N2+ ions with fluences ranging from 1 × 1014 to 5 × 1016 ions/cm2. FT-IR and Raman spectroscopies were used to quantify the chemical structural transformations which occurred including the evolution of the organic components, the cross-linking of silica clusters, and the clustering of carbon.  相似文献   

20.
Swift heavy ion irradiation has been successfully used to modify the structural, optical, and gas sensing properties of SnO2 thin films. The SnO2 thin films prepared by sol-gel process were irradiated with 75 MeV Ni+ beam at fluences ranging from 1 × 1011 ion/cm2 to 3 × 1013 ion/cm2. Structural characterization with glancing angle X-ray diffraction shows an enhancement of crystallinity and systematic change of stress in the SnO2 lattice up to a threshold value of 1 × 1013 ions/cm2, but decrease in crystallinity at highest fluence of 3 × 1013 ions/cm2. Microstructure investigation of the irradiated films by transmission electron microscopy supports the XRD observations. Optical properties studied by absorption and PL spectroscopies reveal a red shift of the band gap from 3.75 eV to 3.1 eV, and a broad yellow luminescence, respectively, with increase in ion fluence. Gas response of the irradiated SnO2 films shows increase of resistance on exposure to ammonia (NH3), indicating p-type conductivity resulting from ion irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号