首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of buried silicon nitride insulating layers was carried out by SIMNI (separation by implanted nitrogen) process using implantation of 140 keV nitrogen (14N+) ions at fluence of 1.0 × 1017, 2.5 × 1017 and 5.0 × 1017 cm−2 into 〈1 1 1〉 single crystal silicon substrates held at elevated temperature (410 °C). The structures of ion-beam synthesized buried silicon nitride layers were studied by X-ray diffraction (XRD) technique. The XRD studies reveal the formation of hexagonal silicon nitride (Si3N4) structure at all fluences. The concentration of the silicon nitride phase was found to be dependent on the ion fluence. The intensity and full width at half maximum (FWHM) of XRD peak were found to increase with increase in ion fluence. The Raman spectra for samples implanted with different ion fluences show crystalline silicon (c-Si) substrate peak at wavenumber 520 cm−1. The intensity of the silicon peak was found to decrease with increase in ion fluence.  相似文献   

2.
Nano indentation analysis and transmission electron microscopy observation were performed to investigate a microstructural evolution and its influence on the hardening behavior in Fe-Cr alloys after an irradiation with 8 MeV Fe4+ ions at room temperature. Nano indentation analysis shows that an irradiation induced hardening is generated more considerably in the Fe-15Cr alloy than in the Fe-5Cr alloy by the ion irradiation. TEM observation reveals a significant population of the a0<1 0 0> dislocation loops in the Fe-15Cr alloy and an agglomeration of the 1/2a0<1 1 1> dislocation loops in the Fe-5Cr alloy. The results indicate that the a0<1 0 0> dislocation loops will act as stronger obstacles to a dislocation motion than 1/2a0<1 1 1> dislocation loops.  相似文献   

3.
Single crystal silicon samples were implanted at 140 keV by oxygen (16O+) ion beam to fluence levels of 1.0 × 1017, 2.5 × 1017 and 5.0 × 1017 cm−2 to synthesize buried silicon oxide insulating layers by SIMOX (separation by implanted oxygen) process at room temperature and at high temperature (325 °C). The structure and composition of the ion-beam synthesized buried silicon oxide layers were investigated by Fourier transform infrared (FTIR) and Rutherford backscattering spectroscopy (RBS) techniques. The FTIR spectra of implanted samples reveal absorption in the wavenumber range 1250-750 cm−1 corresponding to the stretching vibration of Si-O bonds indicating the formation of silicon oxide. The integrated absorption band intensity is found to increase with increase in the ion fluence. The absorption peak was rather board for 325 °C implanted sample. The FTIR studies show that the structures of ion-beam synthesized buried oxide layers are strongly dependent on total ion fluence. The RBS measurements show that the thickness of the buried oxide layer increases with increase in the oxygen fluence. However, the thickness of the top silicon layer was found to decrease with increase in the ion fluence. The total oxygen fluence estimated from the RBS data is found to be in good agreement with the implanted oxygen fluence. The high temperature implantation leads to increase in the concentration of the oxide formation compared to room temperature implantation.  相似文献   

4.
Light emission from a silicon dioxide layer enriched with silicon has been studied. Samples used had structures made on thermally oxidized silicon substrate wafers. Excess silicon atoms were introduced into a 250-nm-thick silicon dioxide layer via implantation of 60 keV Si+ ions up to a fluence of 2 × 1017 cm−2. A 15-nm-thick Au layer was used as a top semitransparent electrode. Continuous blue light emission was observed under DC polarization of the structure at 8-12 MV/cm. The blue light emission from the structures was also observed in an ionoluminescence experiment, in which the light emission was caused by irradiation with a H2+ ion beam of energy between 22 and 100 keV. In the case of H2+, on entering the material the ions dissociated into two protons, each carrying on average half of the incident ion energy. The spectra of the emitted light and the dependence of ionoluminescence on proton energy were analyzed and the results were correlated with the concentration profile of implanted silicon atoms.  相似文献   

5.
Silicon oxynitride (SixOyNz) layers were synthesized by implanting 16O2+ and 14N2+ 30 keV ions in 1:1 ratio with fluences ranging from 5 × 1016 to 1 × 1018 ions cm−2 into single crystal silicon at room temperature. Rapid thermal annealing (RTA) of the samples was carried out at different temperatures in nitrogen ambient for 5 min. The FTIR studies show that the structures of ion-beam synthesized oxynitride layers are strongly dependent on total ion-fluence and annealing temperature. It is found that the structures formed at lower ion fluences (∼1 × 1017 ions cm−2) are homogenous oxygen-rich silicon oxynitride. However, at higher fluence levels (∼1 × 1018 ions cm−2) formation of homogenous nitrogen rich silicon oxynitride is observed due to ion-beam induced surface sputtering effects. The Micro-Raman studies on 1173 K annealed samples show formation of partially amorphous oxygen and nitrogen rich silicon oxynitride structures with crystalline silicon beneath it for lower and higher ion fluences, respectively. The Ellipsometry studies on 1173 K annealed samples show an increase in the thickness of silicon oxynitride layer with increasing ion fluence. The refractive index of the ion-beam synthesized layers is found to be in the range 1.54-1.96.  相似文献   

6.
The structural evolution of silicon oxide films with Ge+ implantation was traced with a positron beam equipped with positron annihilation Doppler broadening and lifetime spectrometers. Results indicate that the film structure change as a function of the annealing temperature could be divided into four stages: (I) T < 300 °C; (II) 300 °C ? T ? 500 °C; (III) 600 °C ? T ? 800 °C; (IV) T ? 900 °C. In comparison with stage I, the increased positron annihilation Doppler broadening S values during stage II is ascribed to the annealing out of point defects and coalescence of intrinsic open volumes in silicon oxides. The obtained long positron lifetime and high S values without much fluctuation in stage III suggest a rather stable film structure. Further annealing above 900 °C brings about dramatic change of the film structure with Ge precipitation. Positron annihilation spectroscopy is thereby a sensitive probe for the diagnosis of microstructure variation of silicon oxide thin films with nano-precipitation.  相似文献   

7.
SiC epilayers grown on 4H-SiC single crystals were implanted with 850 keV Ni+ ions with fluences in the 0.5-9 × 1016 Ni+/cm2 range. Most of the samples were implanted at 450 °C, but for comparison some implantations were performed at room temperature (RT). In addition, a post-implantation annealing was performed in N2 at 1100 °C in order to recover the implantation-induced structural damage. The disorder produced by the implantation at 450 °C and the effect of the post-implantation annealing on the recrystallization of the substrates have been studied as a function of the fluence by Backscattering Spectrometry in channeling geometry (BS/C) with a 3.45 MeV He2+ beam. RT as-implanted samples showed a completely amorphous region which extends until the surface when irradiated with the highest dose, whereas in the case of 450 °C implantation amorphization does not occur. In general, partial recovery of the crystal lattice quality was found for the less damaged samples, and the dynamic recovery of the crystalline structure increases with the irradiation temperature.  相似文献   

8.
The temperature dependences of the ion-induced electron emission yield γ(T), the crystal structure, and the morphology of a surface layer of the one-dimensional carbon fiber composite KUP-VM (1D) under high-fluence (1018-1019 ion/cm2) irradiation with 30 keV ions at normal incidence both perpendicular and parallel to the fiber directions have been studied. The target temperature has been varied during continuous irradiation from T = −180 to 400 °C. The surface analysis has been performed by the RHEED, SEM and RBS techniques. The surface microgeometry was studied using laser goniophotometry (LGP). It has been found that ion irradiation results in a loss of anisotropy of the surface layer structure because of amorphization at room temperature or recrystallization at a temperature higher than the ion-induced annealing temperature. The fiber morphology anisotropy remains under ion irradiation.  相似文献   

9.
The implantation of Cs atoms in silicon was investigated by dynamic computer simulations using the Monte-Carlo code T-DYN that takes into account the gradual change of the target composition due to the Cs irradiation. The incorporation of Cs atoms was studied for incidence angles ranging from 0° to 85° and for four impact energies (0.2, 0.5, 1 and 3 keV). The total implantation fluences were (1-2) × 1017 Cs/cm2, well above the values required to reach a stationary state. The steady-state Cs surface concentrations exhibit a pronounced dependence on impact angle and energy. At normal incidence, they vary between ∼0.57 (at 0.2 keV) and ∼0.18 (3 keV), but decrease with increasing incidence angle. Under equilibrium, the partial sputtering yield of Si exhibits the typical dependence on incidence angle, first increasing up to a maximum value (at ∼70°-75°) and declining sharply for larger angles. For all irradiation conditions a strongly preferential sputtering of Cs as compared to Si atoms is found, increasing with decreasing irradiation energy (from 4.6 at 3 keV to 7.2 at 0.2 keV) and for nearer-normal incidence.  相似文献   

10.
We have studied the formation of InAs precipitates with dimensions of several nanometers in silicon by means of As (245 keV, 5 × 1016 cm−2) and In (350 keV, 4.5 × 1016 cm−2) implantation at 500 °C and subsequent annealing at 900 °C for 45 min. RBS, SIMS, TEM/TED, RS and PL techniques were used to characterize the implanted layers. The surface density of the precipitates has been found to be about 1.2 × 1011 cm−2. Most of the crystallites are from 3 nm to 6 nm large. A band at 1.3 μm has been registered in the low-temperature PL spectra of (As + In) implanted and annealed silicon crystals. The PL band position follows the quantum confinement model for InAs.  相似文献   

11.
Thin films of Fe3O4 have been deposited on single crystal MgO(1 0 0) and Si(1 0 0) substrates using pulsed laser deposition. Films grown on MgO substrate are epitaxial with c-axis orientation whereas, films on Si substrate are highly 〈1 1 1〉 oriented. Film thicknesses are 150 nm. These films have been irradiated with 200 MeV Ag ions. We study the effect of the irradiation on structural and electrical transport properties of these films. The fluence value of irradiation has been varied in the range of 5 × 1010 ions/cm2 to 1 × 1012 ions/cm2. We compare the irradiation induced modifications on various physical properties between the c-axis oriented epitaxial film and non epitaxial but 〈1 1 1〉 oriented film. The pristine film on Si substrate shows Verwey transition (TV) close to 125 K, which is higher than generally observed in single crystals (121 K). After the irradiation with the 5 × 1010 ions/cm2 fluence value, TV shifts to 122 K, closer to the single crystal value. However, with the higher fluence (1 × 1012 ions/cm2) irradiation, TV again shifts to 125 K.  相似文献   

12.
Low-energy Pb ion implantation into (1 0 0) Si and subsequent high-vacuum electron beam annealing was used to study the potential of sub-surface retention of Pb atoms after applying a high temperature annealing process. 7 keV Pb+ ions were implanted into p-type (1 0 0) Si at room temperature with a fluence of 4 × 1015 ions cm−2. The implantation results in a Pb depth distribution that has a calculated Pb peak concentration of 23.9 at.% at a depth of 8.0 nm. The Pb implanted Si substrates were annealed with a high-current 20 keV electron beam at 200-700 °C for 15 s. The Pb loss by out-diffusion was measured with RBS. Key results are: (i) minimal Pb loss in samples annealed up to 400 °C, (ii) emerging out-diffusion above 400 °C, (iii) retention of Pb atoms in the near-surface region in samples annealed up to 700 °C. Comparison of the RBS data with the calculated evaporation rate of Pb under similar conditions reveals two distinctive temperature ranges in which the measured Pb loss of the implanted samples disagrees with the calculated Pb loss: (1) Pb atoms diffused out of the samples at a higher rate in the temperature range up to 400 °C and (2) the Pb atoms diffused out of the samples at a much slower rate above 450 °C. Both phenomena are attributed to the ion implantation process.  相似文献   

13.
Light emission from silicon dioxide doped with excess silicon by silicon ion implantation was investigated. Photoluminescence of silicon dioxide after silicon ion implantation and subsequent annealing at temperatures exceeding 1000 °C was observed. Excitation with monochromatic light with wavelength ranging from λ = 488 nm to λ = 266 nm leads to wide wavelength band emission ranging from about 650 nm up to about 850 nm with a maximum located at about 750 nm. This red/infrared photoemission is attributed to silicon nanocrystals created in silicon dioxide matrix. However, the same material used in electroluminescent experiments emitted blue and green light as well. In this paper the results of photo- and ionoluminescence experiments will be presented. The interest of the paper is focused on the problem of identification of different regions in the structure responsible for light emission of different wavelengths.  相似文献   

14.
At room temperature, single-crystal silicon was implanted with Cu+ ions at an energy of 80 keV using two doses of 5 × 1015 and 1 × 1017 Cu+ cm−2. The samples were heat treated by conventional thermal annealing at different temperatures: 200 °C, 230 °C, 350 °C, 450 °C and 500 °C. The interdiffusion and solid-state reactions between the as-implanted samples and the as-annealed samples were investigated by means of Rutherford backscattering spectrometry (RBS) and X-ray diffraction (XRD). After annealing at 230 °C, the XRD results of the samples (subject to two different doses) showed formation of Cu3Si. According to RBS, the interdiffusion between Cu and Si atoms after annealing was very insignificant. The reason may be that the formation of Cu3Si after annealing at 230 °C suppressed further interdiffusion between Si and Cu atoms.  相似文献   

15.
Cesium ions were implanted at the energy of 300 keV in YSZ at 300 and 1025 K, with increasing fluences up to 5 × 1016 cm−2. Concentration profiles were determined by Rutherford Backscattering Spectrometry (RBS) measurements. Transmission Electron Microscopy (TEM) experiments were achieved to determine the nature of the damages and to characterize a predicted ternary phase of cesium zirconate. At 300 K, amorphization occurs at high Cs-concentration (9 at.%) due to a chemical effect. TEM investigations performed after in situ post-annealing shows the recrystallization of YSZ concurrently with the cesium release. No precipitation of secondary phases was observed after annealing. With implantation performed at 1025 K, dislocation loops and bubbles were formed but the structure did not undergo amorphization. Dislocation rearrangement leads to the polygonization of the matrix. The cesium concentration reaches a saturation value of 1.5 at.%, and once more no precipitation is observed.  相似文献   

16.
Cz n-type Si(100) wafers were implanted at room temperature with 160 keV He ions at a fluence of 5 × 1016/cm2 and 110 keV H ions at a fluence of 1 × 1016/cm2, singly or in combination. Surface phenomena and defect microstructures have been studied by various techniques, including scanning electron microscopy (SEM), atomic force microscopy (AFM) and cross-sectional transmission electron microscopy (XTEM). Surface exfoliation and flaking phenomena were only observed on silicon by successive implantation of He and H ions after subsequent annealing at temperatures above 400 °C. The surface phenomena show strong dependence on the thermal budget. At annealing temperatures ranging from 500 to 700 °C, craters with size of about 10 μm were produced throughout the silicon surface. As increasing temperature to 800 °C, most of the implanted layer was sheared, leaving structures like islands on the surface. AFM observations have demonstrated that the implanted layer is mainly transfered at the depth around 960 nm, which is quite consistent with the range of the ions. XTEM observations have revealed that the additional low fluence H ion implantation could significantly influence thermal growth of He-cavities, which gives rise to a monolayer of cavities surrounded by a large amount of dislocations and strain. The surface exfoliation effects have been tentatively interpreted in combination of AFM and XTEM results.  相似文献   

17.
Silicon carbide offers unique applications as a wide bandgap semiconductor. This paper reviews various aspects of ion implantation in 4H-SiC studied with a view to optimise ion implantation in silicon carbide. Al, P and Si ions with keV energies were used. Channelling effects were studied in both a-axis and c-axis crystals as a function of tilts along major orthogonal planes and off the major orthogonal planes. Major axes such as [0 0 0 1] and the and minor axis like the showed long channelling tails and optimum tilts for minimising channelling are recommended. TEM analyses of the samples showed the formation of (0 0 0 1) prismatic loops and the loops as well,in both a and c-cut crystals. We also note the presence of voids only in P implanted samples implanted with amorphising doses. The competing process between damage accumulation and dynamic annealing was studied by determining the critical temperature for the transition between crystalline and amorphous SiC and an activation energy of 1.3 eV is extracted.  相似文献   

18.
Low temperature silicon dioxide layers (LTO), deposited on crystalline silicon substrates, and thermally densified at 750 °C for 90 min or 900 °C for 30 min, jointly with thermally grown silicon dioxide layers, were irradiated with low fluence 11 MeV Ti ions. A selective chemical etch of the latent tracks generated by the passage of swift ions was performed by wet or vapour HF solution. The wet process produced conically shaped holes, while the vapour procedure generated almost cylindrical nanopores. In both cases thermal SiO2 showed a lower track etching velocity Vt, but with increasing the densification temperature of the LTO samples, the Vt differences reduced. LTO proved to be suitable for wet and vapour ion track formation, and, as expected, for higher densification temperatures, its etching behaviour approached that of thermal silicon dioxide.  相似文献   

19.
Flash-assisted rapid thermal processing (fRTP) has gained considerable interests for fabrication of ultra-shallow junction in silicon. fRTP can significantly reduce boron diffusion, while attaining boron activation at levels beyond the limits of traditional rapid thermal annealing. The efficiency of fRTP for defect annealing, however, needs to be systematically explored. In this study, a (1 0 0) silicon wafer was implanted with 500 eV boron ions to a fluence of 1 × 1015 cm−2. fRTP was performed with peak temperatures ranging from 1100 °C to 1300 °C for approximately one milli-second. High resolution transmission electron microscopy and secondary ion mass spectrometry were performed to characterize as-implanted and annealed samples. The study shows that fRTP at 1250 °C can effectively anneal defects without causing boron tail diffusion.  相似文献   

20.
The influence of post-annealing time on blistering characteristics induced by 5 × 1016 cm−2 ion-implanted H in Si <1 0 0> was studied in terms of the formation and growth of blisters. Ion energies consisted of 40 and 100 keV. Post-annealing treatments were carried out using furnace annealing (FA) at 400 and 500 °C for a duration of 0.25-3 h in a nitrogen ambient. Raman scattering spectroscopy (RSS), optical microscopy (OM), atomic force microscopy (AFM), and secondary ion mass spectrometry (SIMS) were utilized to analyze the defect complex phases, the appearance of optically-detectable blisters and craters, the average depth of craters, and the hydrogen and oxygen depth profiles in the implanted layer, respectively. Furthermore, a characteristic time for the growth of optically-detectable blisters which was determined from the blister-covered fractions for various post-annealing times is proposed and used as a criterion to identify the effectiveness in the formation and growth of optically-detectable blisters. The results revealed that the characteristic time for the 400 °C-annealed specimens in the 40 keV implant is much shorter than it is in the 100 keV one. However, the characteristic time for the 500 °C-annealed specimens in the 40 keV implant is slightly longer than it is in the 100 keV implant. In addition, both the characteristic times for the 500 °C-annealed specimens are much shorter than those for the 400 °C ones. The above-mentioned phenomena hold true for craters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号