首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new measurement and analysis method for determining the ortho-positronium collisional quenching rate for low vapor-pressure gases is developed. It uses hydrophobic silica aerogels as highly efficient positronium formation media and microchambers. The value of the normalized positronium quenching rate, 1Zeff, for CH3Br measured by this method is 0.70 ± 0.04.  相似文献   

2.
Ab initio multireference single- and double-excitation configuration interaction (MRD-CI) wave functions have been employed to compute the annihilation rates (AR) of positronic molecular complexes of four alkali hydrides. The first step in these calculations is the evaluation of integrals of the two-particle Dirac delta function δ+− over pairs of electronic and positronic basis functions. MRD-CI wave functions calculated with the same basis are then employed to obtain expectation values of the δ+− operator (Zeff), which in turn are proportional to the corresponding annihilation rates (AR) of the associated many-particle states. The importance of removing near-linear dependencies in the basis sets employed is stressed as well as the advisability of placing diffuse (small-exponent) functions in the basis only at the most electronegative center of the molecule. A tendency to underestimate the Zeff values is noted because of the impracticality of including sufficiently high-l basis functions in the basis for general molecular systems. However, comparison with the relatively accurate values for the four-electron e+LiH complex obtained by Quantum Monte-Carlo (QMC) and other methods indicates that the fractional error is nearly constant over a large range of internuclear distance, consistent with the expectation that missing correlation effects in the MRD-CI treatment are predominantly atomic in nature. A scaling procedure based on the asymptotic δ+− value, which is the same for all four alkali hydrides, is then shown to produce good agreement with the QMC AR data for e+LiH. The same procedure has been applied to the δ+− values for the positronic complexes of the heavier alkali hydrides for which no other theoretical results are available. Trends in the variation of the AR results with bond distance are discussed.  相似文献   

3.
The structural evolution of silicon oxide films with Ge+ implantation was traced with a positron beam equipped with positron annihilation Doppler broadening and lifetime spectrometers. Results indicate that the film structure change as a function of the annealing temperature could be divided into four stages: (I) T < 300 °C; (II) 300 °C ? T ? 500 °C; (III) 600 °C ? T ? 800 °C; (IV) T ? 900 °C. In comparison with stage I, the increased positron annihilation Doppler broadening S values during stage II is ascribed to the annealing out of point defects and coalescence of intrinsic open volumes in silicon oxides. The obtained long positron lifetime and high S values without much fluctuation in stage III suggest a rather stable film structure. Further annealing above 900 °C brings about dramatic change of the film structure with Ge precipitation. Positron annihilation spectroscopy is thereby a sensitive probe for the diagnosis of microstructure variation of silicon oxide thin films with nano-precipitation.  相似文献   

4.
Positron annihilation lifetime spectroscopy measurements were performed on neutron-irradiated low carbon arc cast Mo. Irradiation took place in the high flux isotope reactor, Oak Ridge National Laboratory, at a temperature of 80 ± 10 °C. Neutron fluences ranged from 2 × 1021 to 8 × 1024 n/m2 (E > 0.1 MeV), corresponding to displacement damage levels in the range from 7.2 × 10−5 to 2.8 × 10−1 displacements per atom (dpa). A high density of submicroscopic cavities was observed in the neutron-irradiated Mo and their size distributions were estimated. Cavities were detected even at a very low-dose of ∼10−4 dpa. The average size of the cavities did not change significantly with dose, in contrast to neutron-irradiated bcc Fe where cavity sizes increased with increasing dose. It is suggested that the in-cascade vacancy clustering may be significant in neutron-irradiated Mo, as predicted by molecular dynamics simulations.  相似文献   

5.
The behaviour of vacancy like implantation-induced defects created in the track region of 800 keV 3He ions in polycrystalline tungsten was studied by Doppler broadening spectroscopy as a function of annealing temperature. A slow positron beam, coupled with a Doppler broadening spectrometer, was used to measure the low- and high-momentum annihilation fractions, S and W, respectively, as a function of positron energy in tungsten samples implanted at different fluences from 1014 to 5 × 1016 cm−2. The behaviour of the S(E), W(E) and S(W) plots with the annealing temperature clearly indicates that the irradiation-induced vacancy like defects begin to evolve between 523 and 573 K, whatever the implantation fluence. This first temperature stage evolution corresponds to the migration of the monovacancies created during implantation to form larger vacancy like defects of which depth profile is different from the initial radiation-induced defects one.  相似文献   

6.
Microdefects and 3d electrons in B2-FeAl alloys with different chemical composition, single crystal of Fe and cold-rolled Fe has been studied by positron lifetime and coincidence Doppler broadening spectroscopy. The coincidence Doppler broadening spectrum of the single crystal of Fe shows the highest 3d electron signal in the spectra of all tested samples. The 3d electron signal in the spectrum of Fe50Al50 alloy is much lower than that of the cold-rolled Fe. This indicates that some of the 3d electrons of Fe atoms and 3p electrons of Al atoms in B2-FeAl alloy are localized to form strong covalent bonds, thus decreasing the probability of positron annihilation with 3d electrons of Fe atoms. With the increase of Al content in B2-FeAl alloys, the 3d electron signal in the spectrum of the alloy decreases, while the open volume of defect increases.  相似文献   

7.
The hardening and embrittlement of reactor pressure vessel steels are of great concern in the actual nuclear power plant life assessment. This embrittlement is caused by irradiation-induced damage, and positron annihilation spectroscopy has been shown to be a suitable method for analysing most of these defects. In this paper, this technique (both positron annihilation lifetime spectroscopy and coincidence Doppler broadening) has been used to investigate neutron irradiated model alloys, with increasing chemical complexity and a reactor pressure vessel steel. It is found that the clustering of copper takes place at the very early stages of irradiation using coincidence Doppler broadening, when this element is present in the alloy. On the other hand, considerations based on positron annihilation spectroscopy analyses suggest that the main objects causing hardening are most probably self-interstitial clusters decorated with manganese in Cu-free alloys. In low-Cu reactor pressure vessel steels and in (Fe, Mn, Ni, Cu) alloys, the main effect is still due to Cu-rich precipitates at low doses, but the role of manganese-related features becomes pre-dominant at high doses.  相似文献   

8.
Recently, a new stage of experimental studies on positronium negative ions has begun. This is due to the development of a new detection method and the discovery of the ion formation at metal surfaces. In the present paper, experimental studies are reviewed and future experiments are proposed.  相似文献   

9.
Numerical quantum-mechanical positron lifetime calculations were performed for mono-vacancies, di-vacancies, tri-vacancies and small nano-voids containing helium and hydrogen in neutron irradiated beryllium. Helium and hydrogen atoms in the sample after the irradiation are considered as atoms forming interstitial O-type loops. Spherical clusters of vacancies are included in the calculations as a reference. It was found that the presence of He and H atoms significantly changes the positron lifetime in irradiated beryllium. A correlation between the positron lifetime and mutual position of vacancies in nano-voids and interstitial loops was established.  相似文献   

10.
The vacancy defect evolution under electron irradiation in austenitic Fe-34.2 wt% Ni alloys containing oversized (aluminum) and undersized (silicon) alloying elements was investigated by positron annihilation spectroscopy at temperatures between 300 and 573 K. It is found that the accumulation of vacancy defects is considerably suppressed in the silicon-doped alloy. This effect is observed at all the irradiation temperatures. The obtained results provide evidence that the silicon-doped alloy forms stable low-mobility clusters involving several Si and interstitial atoms, which are centers of the enhanced recombination of migrating vacancies. The clusters of Si-interstitial atoms also modify the annealing of vacancy defects in the Fe-Ni-Si alloy. The interaction between small vacancy agglomerates and solute Al atoms is observed in the Fe-Ni-Al alloy under irradiation at 300-423 K.  相似文献   

11.
Electron-positronium scattering has been investigated in the Debye plasma environment employing the close-coupling approximation. Three models, viz. 3-state CCA, 6-state CCA and 9-state CCA, have been employed. The 2s21Se autodetaching resonant state of the positronium negative ion has been successfully predicted for various plasma environments. The position of the resonance for different Debye lengths are in close agreement with those of Kar and Ho [S. Kar, Y.K. Ho, Phys. Rev. A 71 (2005) 052503].  相似文献   

12.
In addition to its numerous technological applications amorphous silica (a-SiO2) is also well suited to the creation and study of exotic atoms such as positronium (Ps) and muonium. In particular, a dense Ps gas may be created by implanting an intense positron pulse into a porous a-SiO2 sample. However, such positron pulses can constitute a significant dose of radiation, which may damage the sample. We have observed a reduction in the amount of Ps formed in a thin film of porous a-SiO2 following irradiation by intense positron pulses, indicating the creation of paramagnetic centers. The data show that the primary effect of the irradiation is the inhibition of Ps formation, with no significant change in the subsequent Ps lifetime, from which we deduce that damage centers are created primarily in the bulk material and not on the internal surfaces of the pores, where they would be accessible to the long-lived Ps. We find that the damage is reversible, and that the system may be returned to its original state by heating to 700 K. The implications of these results for experiments with dense Ps in porous materials are discussed.  相似文献   

13.
Ab initio multireference single- and double-excitation configuration interaction (MRD-CI) calculations have been carried out for magnesium oxide (MgO) and lithium oxide (LiO) and their positronic complexes. These results are compared with previous theoretical data obtained earlier for beryllium oxide (BeO) and the series of alkali hydrides with and without an additional positron. Potential curves have been constructed for each of the systems, MgO, e+MgO, LiO and e+LiO. Positron affinities (PAs) of 0.472 eV and 0.304 eV, respectively, have been computed for the ground states of MgO and LiO. Because of the relatively low ionization potential of the Li atom, it is found that the dissociation limit in the latter case is Li+ + PsO (Oe+e), whereas it is Mg + e+O in the former case, in close analogy to what has been found for e+BeO. Significant changes in bond lengths, vibrational frequencies and dissociation energies are indicated as a result of binding a positron to each of these oxides as well as to the alkali hydrides studied earlier. The general trend observed is toward increased bond length and decreased frequency as a result of attaching a positron to these systems in their various low-lying electronic states.  相似文献   

14.
Two-detector coincidence system and mono-energetic slow positron beam has been applied to measure the Doppler broadening spectra for single crystals of SiO2, SiO2 films with different thickness thermally grown on single crystal of Cz-Si, and single crystal of Si without oxide film. Oxygen is recognized as a peak at about 11.85 × 10−3m0c on the ratio curves. The S parameters decrease with the increase of positron implantation energy for the single crystal of SiO2 and Si without oxide film. However, for the thermally grown SiO2-Si sample, the S parameters in near surface of the sample increase with positron implantation energy. It is due to the formation of silicon oxide at the surface, which lead to lower S value. S and W parameters vary with positron implantation depth indicate that the SiO2-Si system consist of a surface layer, a SiO2 layer, a SiO2-Si interface layer and a semi-infinite Si substrate.  相似文献   

15.
The Van der Waals two-body dispersion coefficients for interactions between the positronium (Ps) atom and light atoms have been investigated using highly correlated exponential basis functions in the framework of both pure Coulomb and screened Coulomb potentials. The C6, C8 and C10 coefficients for Ps-Ps and Ps-H interactions, and the C6 coefficients for Ps-He interactions for both the screened and unscreened cases, are reported.  相似文献   

16.
I discuss rearrangement in low-energy collisions between atoms (ions) and antihydrogen. For many atoms there exists a critical internuclear distance below which the leptons are no longer bound to the heavy particles. At this critical distance the Born-Oppenheimer approximation breaks down. I briefly discuss the case of general atoms. Numerical examples are given for the simple proton-antihydrogen system, which has the advantage that the Born-Oppenheimer approximation can be solved exactly. I study the convergence of the optical potential approach for this system.  相似文献   

17.
In this paper, we describe calculations that we have carried out of cross sections for rearrangement processes in very low-energy helium + antihydrogen scattering that result in or or . A significantly more accurate method from that used previously [E.A.G. Armour, S. Jonsell, Y. Liu, A.C. Todd, Nucl. Instr. and Meth. B 247 (2006) 127] is used to calculate the entrance channel wave function. Results are presented for the first two processes. Mention is made of the use of the method in calculations of low-energy e+H2 scattering.  相似文献   

18.
Monte Carlo simulations of positron transport in nitrogen have been performed based on a complete set of cross sections that has been updated as a result of both experimental and theoretical advances. As the positronium formation cross section becomes dominant at larger mean energies in nitrogen than in argon and hydrogen the effect is much smaller in the case of nitrogen. Nevertheless, the differences between bulk and flux transport coefficients, even in nitrogen, exceed those for electrons, providing another example of the very special case of transport of charged particles under the influence of strong non-conservative collisions.  相似文献   

19.
Yttrium oxide dispersion strengthened (ODS) and non-ODS EUROFER produced by mechanical alloying and hot isostatic pressing have been subjected to isochronal annealing up to 1523 K, and the evolution of the open-volume defects and their thermal stability have been investigated using positron lifetime and coincidence Doppler broadening (CDB) techniques. Transmission electron microscopy (TEM) observations have also been performed on the studied samples to verify the characteristics of the surviving defects after annealing at 1523 K. The CDB spectra of ODS EUROFER exhibit a characteristic signature that is attributed to positron annihilation in Ar-decorated cavities at the oxide particle/matrix interfaces. The variation of the positron annihilation parameters with the annealing temperature shows three stages: up to 623 K, between 823 and 1323 K, and above 1323 K. Three-dimensional vacancy clusters, or voids, are detected in either materials in as-HIPed condition and after annealing at T ? 623 K. In the temperature range 823-1323 K, these voids’ growth and nucleation and the growth of other new species of voids take place. Above 1323 K, some unstable cavities start to anneal out, and cavities associated to oxide particles and other small precipitates survive to annealing at 1523 K. The TEM observations and the positron annihilation results indicate that these cavities should be decorated with Ar atoms absorbed during the mechanical alloying process.  相似文献   

20.
The behavior of 3d electrons in binary Nd-Fe alloys with different Nd content from 7 to 13 at.% has been studied by using positron coincidence Doppler broadening techniques. It has been found that the 3d electron signal in Nd2Fe17 alloy is relatively high as compared with other alloys. In Fe-rich Nd2Fe17 alloys, as the content of Fe increasing, the phase boundaries between α-Fe and Nd2Fe17 phases will increase, which gives rise to the decrease in the probability of positron annihilation with 3d electrons. In Nd-rich Nd2Fe17 alloys, with the decrease of Fe content, the d-d interactions are weakened, and the probability of positron annihilation with 3d electrons will decrease. The coercivity JHc and remanence Jr of the Nd-Fe alloy increase with the d-d interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号