首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The thickness of a CR-39 detector is determined using an energy dispersive X-ray fluorescence (EDXRF) method of analysis. The method is based on exciting a suitable target and measuring the intensity of its fluorescence X-ray lines passing through the CR-39 sample in a fixed geometry. By properly selecting the target material, the method succeeds in assessing the thickness change of CR-39 detectors etched for different time intervals. The bulk etch rate (Vb) may thus be obtained, which is an important parameter for any solid state nuclear track detector. Application of the EDXRF method yielded a value of Vb = (2.01 ± 0.04) μm h−1 for etching in a 6 N NaOH solution at 75 °C. This value agrees with the bulk etch rate of (1.90 ± 0.03) μm h−1, obtained by the conventional mass-change method.  相似文献   

2.
Light emission from a silicon dioxide layer enriched with silicon has been studied. Samples used had structures made on thermally oxidized silicon substrate wafers. Excess silicon atoms were introduced into a 250-nm-thick silicon dioxide layer via implantation of 60 keV Si+ ions up to a fluence of 2 × 1017 cm−2. A 15-nm-thick Au layer was used as a top semitransparent electrode. Continuous blue light emission was observed under DC polarization of the structure at 8-12 MV/cm. The blue light emission from the structures was also observed in an ionoluminescence experiment, in which the light emission was caused by irradiation with a H2+ ion beam of energy between 22 and 100 keV. In the case of H2+, on entering the material the ions dissociated into two protons, each carrying on average half of the incident ion energy. The spectra of the emitted light and the dependence of ionoluminescence on proton energy were analyzed and the results were correlated with the concentration profile of implanted silicon atoms.  相似文献   

3.
In this work x-cut Lithium Niobate crystals were implanted with 0.5 MeV O ions (nuclear stopping regime), 5 MeV O ions (sub-threshold electronic stopping regime) and 12.5 MeV Ti ions (ion track regime) at the fluences required for the formation of a surface fully disordered layer. The damage depth profiles were determined by RBS-channeling. Wet etching was performed at room temperature in 50% HF:H2O solution. The data indicated an exponential dependence of the etching rate on the damage concentration. Independently of the damage regime, once random level in the RBS-channeling spectra was attained we measured the same etching rate (50-100 nm/s) and the same volume expansion (∼10%) in all samples. These results indicate that the fully disordered layers obtained by electronic damage accumulation have the same chemical properties of those obtained by conventional nuclear damage accumulation and therefore they can be defined “amorphous”. The impressive etching selectivity of ion implanted regions makes this process suitable for sub-micro machining of Lithium Niobate.  相似文献   

4.
Silicon oxynitride (SixOyNz) layers were synthesized by implanting 16O2+ and 14N2+ 30 keV ions in 1:1 ratio with fluences ranging from 5 × 1016 to 1 × 1018 ions cm−2 into single crystal silicon at room temperature. Rapid thermal annealing (RTA) of the samples was carried out at different temperatures in nitrogen ambient for 5 min. The FTIR studies show that the structures of ion-beam synthesized oxynitride layers are strongly dependent on total ion-fluence and annealing temperature. It is found that the structures formed at lower ion fluences (∼1 × 1017 ions cm−2) are homogenous oxygen-rich silicon oxynitride. However, at higher fluence levels (∼1 × 1018 ions cm−2) formation of homogenous nitrogen rich silicon oxynitride is observed due to ion-beam induced surface sputtering effects. The Micro-Raman studies on 1173 K annealed samples show formation of partially amorphous oxygen and nitrogen rich silicon oxynitride structures with crystalline silicon beneath it for lower and higher ion fluences, respectively. The Ellipsometry studies on 1173 K annealed samples show an increase in the thickness of silicon oxynitride layer with increasing ion fluence. The refractive index of the ion-beam synthesized layers is found to be in the range 1.54-1.96.  相似文献   

5.
Light emission from silicon dioxide doped with excess silicon by silicon ion implantation was investigated. Photoluminescence of silicon dioxide after silicon ion implantation and subsequent annealing at temperatures exceeding 1000 °C was observed. Excitation with monochromatic light with wavelength ranging from λ = 488 nm to λ = 266 nm leads to wide wavelength band emission ranging from about 650 nm up to about 850 nm with a maximum located at about 750 nm. This red/infrared photoemission is attributed to silicon nanocrystals created in silicon dioxide matrix. However, the same material used in electroluminescent experiments emitted blue and green light as well. In this paper the results of photo- and ionoluminescence experiments will be presented. The interest of the paper is focused on the problem of identification of different regions in the structure responsible for light emission of different wavelengths.  相似文献   

6.
The synthesis of buried silicon nitride insulating layers was carried out by SIMNI (separation by implanted nitrogen) process using implantation of 140 keV nitrogen (14N+) ions at fluence of 1.0 × 1017, 2.5 × 1017 and 5.0 × 1017 cm−2 into 〈1 1 1〉 single crystal silicon substrates held at elevated temperature (410 °C). The structures of ion-beam synthesized buried silicon nitride layers were studied by X-ray diffraction (XRD) technique. The XRD studies reveal the formation of hexagonal silicon nitride (Si3N4) structure at all fluences. The concentration of the silicon nitride phase was found to be dependent on the ion fluence. The intensity and full width at half maximum (FWHM) of XRD peak were found to increase with increase in ion fluence. The Raman spectra for samples implanted with different ion fluences show crystalline silicon (c-Si) substrate peak at wavenumber 520 cm−1. The intensity of the silicon peak was found to decrease with increase in ion fluence.  相似文献   

7.
Cz n-type Si(100) wafers were implanted at room temperature with 160 keV He ions at a fluence of 5 × 1016/cm2 and 110 keV H ions at a fluence of 1 × 1016/cm2, singly or in combination. Surface phenomena and defect microstructures have been studied by various techniques, including scanning electron microscopy (SEM), atomic force microscopy (AFM) and cross-sectional transmission electron microscopy (XTEM). Surface exfoliation and flaking phenomena were only observed on silicon by successive implantation of He and H ions after subsequent annealing at temperatures above 400 °C. The surface phenomena show strong dependence on the thermal budget. At annealing temperatures ranging from 500 to 700 °C, craters with size of about 10 μm were produced throughout the silicon surface. As increasing temperature to 800 °C, most of the implanted layer was sheared, leaving structures like islands on the surface. AFM observations have demonstrated that the implanted layer is mainly transfered at the depth around 960 nm, which is quite consistent with the range of the ions. XTEM observations have revealed that the additional low fluence H ion implantation could significantly influence thermal growth of He-cavities, which gives rise to a monolayer of cavities surrounded by a large amount of dislocations and strain. The surface exfoliation effects have been tentatively interpreted in combination of AFM and XTEM results.  相似文献   

8.
The influence of the alkali resistant surfactant Dowfax 2A1 on single ion track etching in 30 μm polycarbonate foils is studied at low etch rate (5 M NaOH at 41.5 ± 2 °C) using electro conductivity measurements. At surfactant concentrations above 10−4 vol.% break-through times are predictable (Δt/t < 0.25). At high surfactant concentrations (?0.1 vol.%) the formation of cylindrical channels is favoured. The shape of these channels (length ? 26 μm, diameter ? 1.8 μm) is verified by electro-replication and SEM observation of the resulting wires. Agreement of radii is better than 0.1 μm. Depending on the current limit set during electro replication compact or hollow cylinders can be obtained. A technique for localizing and manipulating individual micro wires by their head buds is described.  相似文献   

9.
Silicon nitride layers of 140 nm thickness were deposited on silicon wafers by low pressure chemical vapour deposition (LPCVD) and irradiated at GANIL with Pb ions of 110 MeV up to a maximum fluence of 4 × 1013 cm−2. As shown in a previous work these irradiation conditions, characterized by a predominant electronic slowing-down (Se = 19.3 keV nm−1), lead to damage creation and formation of etchable tracks in Si3N4. In the present study we investigated other radiation-induced effects like out of plane swelling and refractive index decrease. From profilometry, step heights as large as 50 nm were measured for samples irradiated at the highest fluences (>1013 cm−2). From optical spectroscopy, the minimum reflectivity of the target is shifted towards the high wavelengths at increasing fluences. These results evidence a concomitant decrease of density and refractive index in irradiated Si3N4. Additional measurements, performed by ellipsometry, are in full agreement with this interpretation.  相似文献   

10.
We have studied the influence of the ion species, ion energy, fluence, irradiation temperature and post-implantation annealing on the formation of shallow dislocation loops in silicon, for fabrication of silicon light emitting diodes. The substrates used were (1 0 0) Si, implanted with 20-80 keV boron at room temperature and 75-175 keV silicon at 100 and 200 °C. The implanted fluences were from 5 × 1014 to 1 × 1015 ions/cm2. After irradiation the samples were processed for 15 s to 20 min at 950 °C by rapid thermal annealing. Structural analysis of the samples was done by transmission electron microscopy and Rutherford backscattering spectrometry. In all irradiations the silicon substrates were not amorphized, and that resulted in the formation of extrinsic perfect and faulted dislocation loops with Burgers vectors a/2〈1 1 0〉 and a/3〈1 1 1〉, respectively, sitting in {1 1 1} habit planes. It was demonstrated that by varying the ion implantation parameters and post-irradiation annealing, it is possible to form various shapes, concentration and distribution of dislocation loops in silicon.  相似文献   

11.
Cables used in a nuclear power plant are irradiation suppressing ones. Until now, researches on the irradiation suppressing cables have mainly been focused on insulation materials. Therefore, in this paper, the non-isothermal crystallization behaviors and degradation characteristics of ethylene vinyl acetate-carbon black (EVA-CB), used as a shielding material, were investigated by means of the Differential scanning calorimetry (DSC) and chemiluminescence analyzer (CL). The specimens were cooled after removing thermal history at 150 °C for 5 min by changing the cooling rates to 5, 7.5, 10, 15 and 20 °C/min with DSC. In addition, after maintaining a thermal equilibrium at each temperature of 25, 50, 75, 100, 125, 150 and 175 °C, their thermoluminescence was measured for 20 min with CL equipment. The 60Co γ-ray was used for irradiation. Tc, T0, T and t1/2 in the DSC experiments are found to decrease gradually as radiation dose increases. Secondly, with the CL experiment, the 0.1, 0.25 and 0.5 MGy EVA-CB composites were found to show a much smaller thermoluminescence than the intact EVA-CB composites, while the 0.75 and 1 MGy EVA-CB composites were found to show a much higher thermoluminescence than ones.  相似文献   

12.
Flash-assisted rapid thermal processing (fRTP) has gained considerable interests for fabrication of ultra-shallow junction in silicon. fRTP can significantly reduce boron diffusion, while attaining boron activation at levels beyond the limits of traditional rapid thermal annealing. The efficiency of fRTP for defect annealing, however, needs to be systematically explored. In this study, a (1 0 0) silicon wafer was implanted with 500 eV boron ions to a fluence of 1 × 1015 cm−2. fRTP was performed with peak temperatures ranging from 1100 °C to 1300 °C for approximately one milli-second. High resolution transmission electron microscopy and secondary ion mass spectrometry were performed to characterize as-implanted and annealed samples. The study shows that fRTP at 1250 °C can effectively anneal defects without causing boron tail diffusion.  相似文献   

13.
The microstructure of thermally grown oxides (TGO) and the creep properties of alloy 617 were investigated. Oxidation and creep tests were performed on 100 μm thick foils at 800-1000 °C in air environment, while the thickness of TGO was monitored in situ. According to energy dispersive X-ray (EDX) mapping micrographs observation, superficial dense oxides, chromia (Cr2O3), which was thermodynamically unstable at 1000 °C, and discrete internal oxides, alumina (α-Al2O3), were found. Consequently, the weight of the foil specimen decreased due to the spalling and volatilization of the Cr2O3 oxide layer after an initial weight-gaining. Secondary and tertiary creeps were observed at 800 °C, while the primary, secondary and tertiary creeps were observed at 1000 °C. Dynamic recrystallization occurred at 800 °C and 900 °C, while partial dynamic recrystallization at 1000 °C. The apparent activation energy, Qapp, for the creep deformation was 271 kJ/mol, which was independent of the applied stress.  相似文献   

14.
A metal-oxide-silicon (MOS) tunneling light-emitting diode is fabricated with ion-beam-synthesized β-FeSi2 precipitates embedded in the active region. Fe ions were implanted into p-100 silicon substrate at cryogenic temperature (∼−120 °C), followed by rapid thermal oxidation (RTO). Under constant voltage biased in accumulation and at temperatures down to 80 K, electroluminescence (EL) with wavelength peaking at ∼1.5 μm is observed at a current density of about 2.0 A/cm2. Light output increases linearly with current density. Temperature dependence of the EL shows that the luminescence is due to interband recombination in the crystalline precipitates. The strain in these isolated precipitates may contribute to the luminescence properties of β-FeSi2 in silicon.  相似文献   

15.
Thin films of Fe3O4 have been deposited on single crystal MgO(1 0 0) and Si(1 0 0) substrates using pulsed laser deposition. Films grown on MgO substrate are epitaxial with c-axis orientation whereas, films on Si substrate are highly 〈1 1 1〉 oriented. Film thicknesses are 150 nm. These films have been irradiated with 200 MeV Ag ions. We study the effect of the irradiation on structural and electrical transport properties of these films. The fluence value of irradiation has been varied in the range of 5 × 1010 ions/cm2 to 1 × 1012 ions/cm2. We compare the irradiation induced modifications on various physical properties between the c-axis oriented epitaxial film and non epitaxial but 〈1 1 1〉 oriented film. The pristine film on Si substrate shows Verwey transition (TV) close to 125 K, which is higher than generally observed in single crystals (121 K). After the irradiation with the 5 × 1010 ions/cm2 fluence value, TV shifts to 122 K, closer to the single crystal value. However, with the higher fluence (1 × 1012 ions/cm2) irradiation, TV again shifts to 125 K.  相似文献   

16.
Phase equilibria in the system Si-U-V were established at 1100 °C by optical microscopy, EMPA and X-ray diffraction. Two ternary compounds were observed, U2V3Si4 and (U1−xVx)5Si3, for which the crystal structures were elucidated by X-ray powder data refinement and found to be isotypic with the monoclinic U2Mo3Si4-type (space group P21/c; a = 0.6821(3), b = 0.6820(4), c = 0.6735(3) nm, β = 109.77(1)°) and the tetragonal W5Si3-type (space group I4/mcm, a = 1.06825(2), c = 0.52764(2) nm), respectively. (U1−xVx)5Si3 appears at 1100 °C without any significant homogeneity region at x ∼ 0.2 resulting in a formula U4VSi3 which corresponds to a fully ordered atom arrangement. DTA experiments clearly show decomposition of this phase above 1206 °C revealing a two-phase region U3Si2 + V3Si. At 1100 °C U4VSi3 is in equilibrium with V3Si, V5Si3, U3Si2 and U(V). At 800 °C U4VSi3 forms one vertex of the tie-triangle to U3Si and V3Si. Due to the rather high thermodynamic stability of V3Si and the corresponding tie-lines V3Si + liquid at 1100 °C and V3Si + U(V) below 925 °C, no compatibility exists between U3Si or U3Si2 and vanadium metal.  相似文献   

17.
At room temperature, single-crystal silicon was implanted with Cu+ ions at an energy of 80 keV using two doses of 5 × 1015 and 1 × 1017 Cu+ cm−2. The samples were heat treated by conventional thermal annealing at different temperatures: 200 °C, 230 °C, 350 °C, 450 °C and 500 °C. The interdiffusion and solid-state reactions between the as-implanted samples and the as-annealed samples were investigated by means of Rutherford backscattering spectrometry (RBS) and X-ray diffraction (XRD). After annealing at 230 °C, the XRD results of the samples (subject to two different doses) showed formation of Cu3Si. According to RBS, the interdiffusion between Cu and Si atoms after annealing was very insignificant. The reason may be that the formation of Cu3Si after annealing at 230 °C suppressed further interdiffusion between Si and Cu atoms.  相似文献   

18.
Effect of CuO on CaTiO3 (CT) ceramics prepared using a direct sintering process (reaction-sintering process) was investigated. The mixture of raw materials was pressed and sintered into ceramics without any calcination stage involved. Pure CT could be obtained. The degree of densification in CT via reaction-sintering process is lower than traditional oxide route but the grains grew easier in CT via reaction-sintering process. A density 3.63 g/cm3 (90.3% of ρth) is obtained in CT pellets after 1500 °C/16 h sintering. With 3 wt.% CuO addition, density 3.92 g/cm3 (97.5% of ρth) is obtained after 8 h sintering at 1500 °C due to the liquid phase sintering. The liquid phase at grain boundaries appeared significantly at a lower sintering temperature for longer soak time.  相似文献   

19.
Solid-state nuclear track detectors (SSNTDs), such as LR 115, have been commonly used in diffusion chambers for long-term measurements of radon gas concentrations. For the LR 115 SSNTD, it has been found that the active layer removed during chemical etching is significantly affected by the presence and amount of stirring, and thus cannot be controlled easily. However, the sensitivity of the LR 115 detector inside a diffusion chamber to the radon and/or thoron gas concentration is dependent on the actual removed active layer thickness. This relationship is dependant on the geometry of the diffusion chamber and the deposition fraction of 218Po in the diffusion chamber, as well as the V function for the LR 115 detector (V is the ratio between the track etch velocity Vt to the bulk etch velocity Vb). This paper presents the experimentally determined relationships between the sensitivity of the LR 115 detector inside a Karlsruhe diffusion chamber and the removed active layer thickness, for both radon and thoron. A V function was adjusted to simulate the relationships. In particular, for the case of 222Rn, we have found f ∼ 0.5, where f is the fraction of 218Po which decays inside the diffusion chamber before deposition onto available inner surfaces of the chamber. In conclusion, we have found that the sensitivities critically depend on the actual removed active layer thickness, so this should be monitored and used in determining the sensitivities.  相似文献   

20.
Polymeric matrix composite (PMC) has been used in engineering applications instead of metal in the last few years, due to its corrosion resistance and excellent relation between tensile strength/density and elastic modulus/density. However, PMC materials cured by thermal process require high temperature and are time-consuming. The electron beam (EB) curing technology allows its use at room temperature and reduced curing times, and this is one of the main advantages over thermal technology. The aim of this work is to investigate electron beam curable epoxy formulations to use in filament winding processes to produce composite material with similar or better properties than thermal curable composites. The study has been made with commercial epoxy resins and cationic initiators. The epoxy resin samples were irradiated for few minutes with total dose of 150 kGy. The glass transition temperatures (Tg) were determined by dynamic mechanical analyzer (DMA) and the result was 137 °C. The thermal process was carried out in a furnace following three steps: 4 h at 90 °C, increasing temperature from 90 °C to 130 °C during 4 h and 12 h at 130 °C. The total process time was 20 h. The Tg of this sample was 102 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号