首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The SHI irradiation induced effects on magnetic properties of MgB2 thin films are reported. The films having thickness 300-400 nm, prepared by hybrid physical chemical vapor deposition (HPCVD) were irradiated by 200 MeV Au ion beam (S∼ 23 keV/nm) at the fluence 1 × 1012 ion/cm2. Interestingly, increase in the transition temperature Tc from 35.1 K to 36 K resulted after irradiation. Substantial enhancement of critical current density after irradiation was also observed because of the pinning provided by the defects created due to irradiation. The change in surface morphology due to irradiation is also studied.  相似文献   

2.
We report the synthesis of titanium nitride coating on a titanium substrate by utilizing energetic nitrogen ions emitted from a 2.3 kJ dense plasma focus device for 30 focus shots. The number of nitrogen ions transferred to the sample by a single ion pulse of about 140 ns duration in the energy interval (40-600 keV) is about 1.09 × 1012 with a mean energy per ion of 58 keV. The corresponding energy flux delivered to the titanium surface is estimated to be 6.17 × 1014 keV cm−3 ns−1 leading to a transient temperature rise of the top layer of about 5400 K which helps layer growth. The coating is investigated on the basis of its morphological, compositional and hardness properties. X-ray diffraction analysis of the sample reveals the formation of a nanocrystalline titanium nitride coating having (1 1 1) and (2 0 0) plane reflections with an average crystallite size of 40 nm. The compressive residual stresses in the nitride coating have been evaluated to be 2.80 GPa and 6.81 GPa corresponding to (1 1 1) and (2 0 0) plane orientations. A complete restructuring of the manually polished titanium substrate has been observed with appearance of nano-sized multidimensional granular surface morphologies. The thickness of the nitride coating is about 1 μm, whereas the coating has a nitrogen content of 35.35 at.% and 13.78 ± 3.57 wt.% and a surface hardness of 8.19 GPa.  相似文献   

3.
We synthesize Ti-PS nanocomposites by plasma immersion ion implantation and deposition (PIII&D) technique. Ti nanoparticles at size of 5-15 nm are found in PS matrix. We propose the formation of Ti nanoparticles as a result of the combined effect of ion implantation and ion condensation in PIII&D process. X-ray photoelectron spectroscopy measurements reveal that Ti atoms have three different chemical states, metal, oxide and carbide. While surface Ti atoms are oxidized, embedded Ti atoms keep their metallic states by surrounding PS matrix. We characterize optical absorbance of Ti-PS nanocomposites by UV-VIS measurements. An adsorption peak due to the excitation of localized surface plasmon is found at wavelength 337.5 nm and the fractal nature of Ti-PS nanocomposites broaden absorption wavelength from UV to infrared. In addition, we use a protein assay to measure protein immobilization. It is found that the amount of protein immobilized on Ti-PS nanocomposites is almost twice than that on pristine PS. The enhancement mechanisms are attributed to the increased surface roughness as well as covalent linkages between protein molecules and functional groups on the surface of Ti-PS nanocomposites.  相似文献   

4.
Cobalt nanowires with diameter 75 nm were synthesized in ion track-etched membranes by electrochemical deposition. Scanning electron microscopy displays cylindrical wires with smooth and homogeneous contours. X-ray diffraction studies indicate that the wires possess a face centered cubic structure and a preferred growth orientation along the [1 1 0] direction. The wires exhibit magnetic anisotropy, which is observed and is ascribed to shape anisotropy. The optical extinction spectrum shows a band which probably originates from a surface plasmon resonance.  相似文献   

5.
Titanium-nickel thin films have been deposited on float glass substrates by ion beam sputtering in 100% pure argon atmosphere. Sputtering is predominant at energy region of incident ions, 1000 eV to 100 keV. The as-deposited films were investigated by X-ray photoelectron spectroscopy (XPS) and atomic force microscope (AFM). In this paper we attempted to study the surface morphology and elemental composition through AFM and XPS, respectively. Core level as well as valence band spectra of ion-beam sputtered Ti-Ni thin films at various Ar gas rates (5, 7 and 12 sccm) show that the thin film deposited at 3 sccm possess two distinct peaks at binding energies 458.55 eV and 464.36 eV mainly due to TiO2. Upon increasing Ar rate oxidation of Ti-Ni is reduced and the Ti-2p peaks begin approaching those of pure elemental Ti. Here Ti-2p peaks are observed at binding energy positions of 454.7 eV and 460.5 eV. AFM results show that the average grain size and roughness decrease, upon increasing Ar gas rate, from 2.90 μm to 0.096 μm and from 16.285 nm to 1.169 nm, respectively.  相似文献   

6.
Transmission electron microscopy (TEM) is a standard technique to characterize microelectronic device structures. As structures shrink to the nanoscale, surface damage produced by focused ion beam (FIB) sample preparation destroying the region of interest and degrading the resolution of TEM images becomes increasingly a problem. The thickness of the damaged layer at the sidewalls of a prepared cross section is around 20-30 nm for silicon at typical beam energies of 30 keV. In order to reduce these artifacts to a minimum low beam energies have been proposed for FIB polishing. We use a combination of molecular dynamics simulations and experiments to assess the influence of the focused ion beam on the surface structure of silicon for beam energies ranging from 1-5 keV and a grazing angle of 10° typically used in low voltage FIB polishing. Under these conditions, the thickness of the amorphous layer depends linearly on the beam energy. Intrinsic surface stresses introduced by FIB are always tensile and of a magnitude of around 1 GPa.  相似文献   

7.
Al2O3 thin films find wide applications in optoelectronics, sensors, tribology etc. In the present work, Al2O3 films prepared by electron beam evaporation technique are irradiated with 100 MeV swift Si7+ ions for the fluence in the range 1 × 1012 to 1 × 1013 ions cm−2 and the structural properties are studied by glancing angle X-ray diffraction. It shows a single diffraction peak at 38.2° which indicates the γ-phase of Al2O3. Further, it is observed that as the fluence increases up to 1 × 1013 ions cm−2 the diffraction peak intensity decreases indicating amorphization. Surface morphology studies by atomic force microscopy show mean surface roughness of 34.73 nm and it decreases with increase in ion fluence. A strong photoluminescence (PL) emission with peak at 442 nm along with shoulder at 420 nm is observed when the samples are excited with 326 nm light. The PL emission is found to increase with increase in ion fluence and the results are discussed in detail.  相似文献   

8.
Changes in the shape and size of Co, Pt and Au nanoparticles induced by swift heavy-ion irradiation (SHII) have been characterized using a combination of transmission electron microscopy, small-angle X-ray scattering and X-ray absorption near-edge structure. Elemental nanoparticles of diameters 2-15 nm were first formed in amorphous SiO2 by ion implantation and thermal annealing and then irradiated at room temperature with 27-185 MeV Au ions as a function of fluence. Spherical nanoparticles below a minimum diameter (4-7 nm) remained spherical under SHII but progressively decreased in size as a result of dissolution into the SiO2 matrix. Spherical nanoparticles above the minimum diameter threshold were transformed to elongated rods aligned with the ion beamdirection. The nanorod width saturated at an electronic energy deposition dependent value, progressively increasing from 4-6 to 7-10 nm (at 5-18 keV/nm, respectively) while the nanorod length exhibited a broad distribution consistent with that of the unirradiated spherical nanoparticles. The threshold diameter for spherical nanoparticle elongation was comparable to the saturation value of nanorod width. We correlate this saturation value with the diameter of the molten track induced in amorphous SiO2 by SHII. In summary, changes in nanoparticle shape and size are governed to a large extent by the ion irradiation parameters.  相似文献   

9.
Luminescence studies of CaS:Bi nanocrystalline phosphors synthesized by wet chemical co-precipitation method and irradiated with swift heavy ions (i.e. O7+-ion with 100 MeV and Ag15+-ion with 200 MeV) have been carried out. The samples have been irradiated at different ion fluences in the range 1 × 1012-1 × 1013 ions/cm2. The average grain size of the samples before irradiation was estimated as 35 nm using line broadening of XRD (X-ray diffraction) peaks and TEM (transmission electron microscope) studies. Our results suggest a good structural stability of CaS:Bi against swift heavy ion irradiation. The blue emission band of CaS:Bi3+ nanophosphor at 401 nm is from the transition 3P→ 1S0 of the Bi3+. We have observed a decrease in lattice constant (a) and increase of optical energy band gap after ion irradiation. We presume this change due to grain fragmentation by dense electronic excitation induced by swift heavy ion. We have studied the optical and luminescent behavior of the samples by changing the ion energy and also by changing dopant concentration from 0.01 mol% to 0.10 mol%. It has been examined that ion irradiation enhanced the luminescence of the samples.  相似文献   

10.
Ordered luminescent nanoclusters array in the form of grating structures are fabricated on silicon (1 0 0) surface by Q-switched Nd:YAG laser beam irradiation of second harmonic wavelength (532 nm) in vacuum. Blue-green photoluminescence (PL) spectrum from the ordered nanoclusters array exhibits two asymmetrical peaks at 2.58 eV and 2.88 eV in the blue-green region corresponding to the bimodal distribution of nano size clusters. The size of the nanoclusters is estimated from the three dimensional quantum-confined model incorporating Gaussian size distribution. When subjected to rapid thermal annealing at 710 °C for 10 min in N2 atmosphere there is an enhancement of the PL intensity without any change in the peak emission energy and broadening suggesting that the origin of PL is related to quantum confinement effect in Si nanocrystallite. The surface morphology of the irradiated surface varies considerable with the number of laser shots, laser fluence and ambient conditions.  相似文献   

11.
Low energy ion scattering (LEIS) is used to characterize Ga layers deposited onto Si(1 1 1)-(7 × 7) substrates at different deposition temperatures. The Ga/Si system exhibits a pronounced 3D island growth and thus is a suitable object to investigate the relation between LEIS-peak shapes and the morphology of thin films. It is shown that up to a certain critical depth (a few MLs) the single scattering component can be used as a measure of the number of surface Ga atoms per unit area. If a higher amount of Ga is deposited, the single scattering model is not valid anymore and multiple scattering becomes significant. The Ga peak starts to be asymmetric with a well developed multiple scattering component. Such a component can be utilized for the observation of the morphology of the layers. It was found that the more intensive the 3D growth of adsorbed Ga atoms on the Si(1 1 1) substrate, the more pronounced is the multiple scattering yield for a given amount of Ga.  相似文献   

12.
NiO nanoparticle films (200 nm thick) grown on Si substrates by pulsed laser deposition method were irradiated by 200 MeV Ag15+ ions. The films were characterized by glancing angle X-ray diffraction, atomic force microscopy and optical absorption spectroscopy. Though electronic energy loss of 200 MeV Ag ions in NiO matrix was higher than the threshold electronic energy loss for creation of columnar defects, films remained crystalline with the initial fcc structure even up to a fluence of 5 × 1013 ions cm−2, where ion tracks are expected to overlap. Irradiation however modified the microstructure of the NiO films considerably. The grain size decreased with increasing ion fluence, which led to reduced surface roughness and increased optical band gap due to quantum confinement. These results correlate well with variation of the power spectral density exponent with ion fluence, which indicate that at high ion fluences, the evolution of surface morphology is governed by surface diffusion.  相似文献   

13.
Gold nanodispersed targets with islands-grains sized 2-30 nm were irradiated by Ar7+ ions with the energy of 45.5 MeV and (dE/dx)e = 14.2 keV/nm in gold. The desorbed gold nanoclusters were studied by TEM method. For all the targets desorption of intact gold nanoclusters is observed. However, for inelastic stopping of monatomic Ar ions in gold of 14.2 keV/nm desorption of nanoclusters is observed only up to ∼25 nm. The yield of the desorbed nanoclusters considerably decreases from 3 to 0.02 cluster/ion with the increase of the mean size of the desorbed nanoclusters from 3 to 14.2 nm. The results are discussed.  相似文献   

14.
Metal ion implantation in inert polymers may produce ultra-thin conducting films below the polymer surface. These subsurface films are promising structures for strain gauge applications. To this purpose, polycarbonate substrates were irradiated at room temperature with low-energy metal ions (Cu+ and Ni+) and with fluences in the range between 1 × 1016 and 1 × 1017 ions/cm2, in order to promote the precipitation of dispersed metal nanoparticles or the formation of a continuous thin film. The nanoparticle morphology and the microstructural properties of polymer nanocomposites were investigated by glancing-incidence X-ray diffraction and transmission electron microscopy (TEM) measurements. At lower fluences (<5 × 1016 ions/cm2) a spontaneous precipitation of spherical-shaped metal nanoparticles occurred below the polymer top-surface (∼50 nm), whereas at higher fluences the aggregation of metal nanoparticles produced the formation of a continuous polycrystalline nanofilm. Furthermore, a characteristic surface plasmon resonance peak was observed for nanocomposites produced at lower ion fluences, due to the presence of Cu nanoparticles. A reduced electrical resistance of the near-surface metal-polymer nanocomposite was measured. The variation of electrical conductivity as a function of the applied surface load was measured: we found a linear relationship and a very small hysteresis.  相似文献   

15.
A spectral structure of the radiation (190-590 nm) emitted during sputtering of polycrystalline Cu, Be and CuBe targets by Kr+ ions with 5 keV have been presented. Evolution of surface composition during ion beam sputtering is investigated. Several time scales are distinguished, corresponding to different processes: the elimination of surface contaminants, the removal of the corroded layer. The implications for the use of ion beam optical spectroscopy in surface analysis are discussed. In the case of Be and Cu98 Be2, a molecular structure appears between 492 nm and 502 nm. It is similar for both samples and is ascribed to de-excitation of BeH.  相似文献   

16.
We report here the physico-chemical changes brought about by high electronic energy deposition of gold ions in HCl doped polyaniline (PANI) thin films. PANI thin films were synthesized by in situ polymerization technique. The as-synthesized PANI thin films of thickness 160 nm were irradiated using Au7+ ion of 100 MeV energy at different fluences, namely, 5 × 1011 ions/cm2 and 5 × 1012 ions/cm2, respectively. A significant change was seen after irradiation in electrical and photo conductivity, which may be related to increased carrier concentration, and structural modifications in the polymer film. In addition, the high electronic energy deposition showed other effects like cross-linking of polymer chains, bond breaking and creation of defect sites. AFM observations revealed mountainous type features in all (before and after irradiation) PANI samples. The average size (diameter) and density of such mountainous clusters were found to be related with the ion fluence. The AFM profiles also showed change in the surface roughness of the films with respect to irradiation, which is one of the peculiarity of the high electronic energy deposition technique.  相似文献   

17.
The influence of swift heavy ion (SHI) irradiation on structural and photoluminescence (PL) properties of ZnO nanocrystallites deposited into porous silicon (PS) templates by the sol-gel process was studied. The ZnO/PS nanocomposites were irradiated using 120 MeV Au ions at different fluences varying from 1 × 1012 to 1 × 1013 ions/cm2. The intensity of the X-ray diffraction peaks is suppressed at the high fluence, without evolution of any new peak. The PL emission from PS around 700 nm is found to decrease with increase in ion fluence, while the PL emission from deep level defects of ZnO nanocrystallites is increased with ion fluence. At the highest fluence, the observation of drastic increase in PL emission due to donor/acceptor defects in the region 400-600 nm and suppressions of XRD peaks could be attributed to the defects induced structural modifications of ZnO nanocrystallites.  相似文献   

18.
The changes in the optical and electrical properties of polycarbonate (PC) films, bombarded with He and Ar ion beams, have been studied. The PC films were divided into two groups where the first group was bombarded with 130 keV He ions of fluences ranged from 1 × 1014 cm−2 to 2 × 1016 cm−2, while the second one was bombarded with 320 keV Ar of fluences (1 × 1013 cm−2 and 1 × 1015 cm−2). The surface morphology of the unirradiated and irradiated PC films was studied using scanning electron microscopy (SEM) technique. The optical properties of the two groups have been carried out using UV-Vis spectrophotometer and the direct current (DC) electrical conductivity was also performed. The obtained results showed a decrease in the optical energy gap, the optical activation energy and the electrical activation energy with increasing the fluence of both He and Ar ions. Meanwhile, an increase in the DC conductivity was obtained with increasing the fluence of the ions. The bombardment of the PC films with He and Ar ion beams induced formation of carbon clusters near the polymer surface and, also, resulted in scission in the polymer chains.  相似文献   

19.
A Focused Ion Beam (FIB) has been used to implant micrometer-sized areas of polycrystalline anatase TiO2 thin films with Ga+ ions using fluencies from 1015 to 1017 ions/cm2. The evolution of the surface morphology was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, the chemical modifications of the surface were followed by X-ray photoelectron spectroscopy (XPS). The implanted areas show a noticeable change in surface morphology as compared to the as-deposited surface. The surface loses its grainy morphology to gradually become a smooth surface with a RMS roughness of less than 1 nm for the highest ion fluence used. The surface recession or depth of the irradiated area increases with ion fluence, but the rate with which the depth increases changes at around 5 × 1016 ions/cm2. Comparison with implantation of a pre-irradiated surface indicates that the initial surface morphology may have a large effect on the surface recession rate. Detailed analysis of the XPS spectra shows that the oxidation state of Ti and O apparently does not change, whereas the implanted gallium exists in an oxidation state related to Ga2O3.  相似文献   

20.
Large gas cluster impacts cause unique surface modification effects because a large number of target atoms are moved simultaneously due to high-density particle collisions between cluster and surface atoms. Molecular dynamics (MD) simulations of large gas cluster impacts on solid targets were carried out in order to investigate the effect of high-density irradiation with a cluster ion beam from the viewpoint of crater formation and sputtering. An Ar cluster with the size of 2000 was accelerated with 20 keV (10 eV for each constituent atom) and irradiated on a Si(1 0 0) solid target consisting of 2 000 000 atoms. The radius of the Ar cluster was scaled by ranging from 2.3 nm (corresponding to the solid state of Ar) to 9.2 nm (64× lower density than solid state). When the Ar cluster was as dense as solid state, the incident cluster penetrated the target surface and generated crater-like damage. On the other hand, as the cluster radius increased and the irradiation particle density decreased, the depth of crater caused by cluster impact was reduced. MD results also revealed that crater depth was mainly dominated by the horizontal scaling rather than vertical scaling. A high sputtering yield of more than several tens of Si atoms per impact was observed with clusters of 4-20× lower volume density than solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号