首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Multilayer structures with five periods of amorphous SiGe nanoparticles/SiO2 layers with different thickness were deposited by Low Pressure Chemical Vapor Deposition and annealed to crystallize the SiGe nanoparticles. The use of grazing incidence RBS was necessary to obtain sufficient depth resolution to separate the signals arising from the individual layers only a few nm thick. The average size and areal density of the embedded SiGe nanoparticles as well as the oxide interlayer thickness were determined from the RBS spectra. Details of eventual composition changes and diffusion processes caused by the annealing processes were also studied. Transmission Electron Microscopy was used to obtain complementary information on the structural parameters of the samples in order to check the information yielded by RBS. The study revealed that annealing at 900 °C for 60 s, enough to crystallize the SiGe nanoparticles, leaves the structure unaltered if the interlayer thickness is around 15 nm or higher.  相似文献   

2.
We report a direct observation of segregation of gold atoms to the near surface regime due to 1.5 MeV Au2+ ion impact on isolated gold nanostructures deposited on silicon. Irradiation at fluences of 6 × 1013, 1 × 1014 and 5 × 1014 ions cm−2 at a high beam flux of 6.3 × 1012 ions cm−2 s−1 show a maximum transported distance of gold atoms into the silicon substrate to be 60, 45 and 23 nm, respectively. At a lower fluence (6 × 1013 ions cm−2) transport has been found to be associated with the formation of gold silicide (Au5Si2). At a high fluence value of 5 × 1014 ions cm−2, disassociation of gold silicide and out-diffusion lead to the segregation of gold to defect - rich surface and interface regions.  相似文献   

3.
We made n-type nano-scale thin film thermoelectric (TE) devices that consist of multiple periodic layers of Si1−xGex/Si. The period is about 10 nm. The structure was modified by 5 MeV Si ion bombardment that formed a nano-scale cluster structure. In addition to the effect of confinement of the phonon transmission, formation of nanoclusters by the ionization energy of incident MeV Si ions further increases the scattering of phonons, increasing the chance of inelastic interaction of phonons, resulting in more annihilation of phonons. This limits phonon mean free path. Phonons are absorbed and dissipated along the layers rather than in the direction perpendicular to the layer interfaces, therefore cross plane thermal conductivity is reduced. The increase of the density of electronic states due to the formation of nanocluster minibands increases the cross plane Seebeck coefficient and increases the cross plane electric conductivity of the film. Eventually, the thermoelectric figure of merit of the TE film increases.  相似文献   

4.
This study deals with the behaviour of helium in a molybdenum liner dedicated to the retention of fission products. More precisely this work contributes to evaluate the release of implanted helium when the gas has precipitated into nanometric bubbles close to the free surface. A simple model dedicated to calculate the helium release in such a condition is presented. The specificity of this model lays on the assumption that the gas is in equilibrium with a simple distribution of growing bubbles. This effort is encouraging since the calculated helium release fits an experimental dataset with a set of parameters in good agreement with the literature.  相似文献   

5.
Thin films of Ag (1.5 nm thick) are grown on Si (1 1 1) substrates using evaporation method in high vacuum condition and due to non-wetting nature of silver, isolated islands of mean size ≈12.0 nm have been formed on the surface. Au2+ (1.5 MeV) ions have been used to irradiate the above systems at various fluences (5 × 1013-1 × 1015 cm−2) at an impact angle of 5° and at a flux of 6.3 × 1012 cm−2 s−1 (corresponding to a beam current density of 2.0 μA cm−2 for Au2+ ions). Ion beam induced embedding is observed to begin at a fluence of 1 × 1014 cm−2 for this high flux whereas low flux irradiations (current density ≈ 0.02 μA cm−2) of Au2+ ions under similar irradiation conditions did not yield embedding (impact angle 5°). High resolution transmission electron microscopy measurement showed no mixing in the form of silicide formation. These results are compared with high flux modifications in Au/Si system.  相似文献   

6.
Co-Nb amorphous films were prepared with the aid of glancing incident ion beams during deposition process. Influence of ion interaction to phase formation and fine microstructure was studied. Amorphous range is about 19 to 63 at.% Co fractions, which is wider than that obtained by perpendicular ion bombardment (28 to 68 at.% of Co fractions). A ripple or a bamboo raft pattern with nano-scale periodicity is observed in the TEM (transmission electron microscopy), SEM (scanning electron microscopy) and AFM (atomic force microscopy) images. The sizes of the image patterns are characterized by correlation length calculated from height-height correlation function (HHCF). The correlation length along the ion incidence is longer than that perpendicular to the ion incidence. Analysis regards that the glancing incident ion beams have high efficiency in both rapid cooling and ion mixing (IM). The main pattern feature in the images mainly comes from surface erosion. Other fine microstructure and the difference among the images result from surface diffusion or viscous flow effect.  相似文献   

7.
Si/SiC multilayer systems for XUV reflection optics with a periodicity of 10-20 nm were produced by sequential deposition of Si and implantation of 1 keV ions. Only about 3% of the implanted carbon was transferred into the SiC, with a thin, 0.5-1 nm, buried SiC layer being formed. We investigated the effect of thermal annealing on further completion of the carbide layer. For the annealing we used a vacuum furnace, a rapid thermal annealing system in argon atmosphere, and a scanning e-beam, for different temperatures, heating rates, and annealing durations. Annealing to a temperature as low as 600 °C resulted in the formation of a 4.5 nm smooth, amorphous carbide layer in the carbon-implanted region. However, annealing at a higher temperature, 1000 °C, lead to the formation of a rough poly-crystalline carbide layer. The multilayers were characterized by grazing incidence X-ray reflectometry and cross section TEM.  相似文献   

8.
Polyethyleneterephthalate (PET) has been modified by 100 keV Ni+ and N+ ions using metal ion from volatile compound (MIVOC) ion source to fluence ranging from 1 × 1014 to 1 × 1016 ions/cm2. The increasing application of polymeric material in technological and scientific field has motivated the use of surface treatment to modify the physical and chemical properties of polymer surfaces. When a material is exposed to ionization radiation, it suffers damage leading to surface activation depending on the type. The surface morphology was observed by atomic force microscopy (AFM). That show the roughness increases with fluence in both the cases. The Ni particles as precipitation in PET were observed by cross-section transmission electron microscopy (XTEM). The optical band gap (Eg) deduced from absorption spectra; was calculated by Tau’c relation. Raman spectroscopy shows quantitatively the chemical nature at the damage caused by the Ni+ and N+ bombardment. The ration of ID/IG shows graphite-like structure is formed on the surface. A layer of hydrogenated amorphous carbon is formed on the surface, which has confirmed by XPS results also.  相似文献   

9.
China Low Activation Martensitic (CLAM) steel was irradiated at room temperature with different doses of He+ and H+ ion beams. TEM indicated that the microstructure of unirradiated CLAM steel consisted of laths, grain boundaries, dislocations and carbides. Electron diffraction patterns revealed that the microstructure of carbides at grain boundaries was primarily dominated by M23C6 carbide. Vacancy clusters were induced into the matrix after irradiation. TEM-EDX of carbides and matrices of unirradiated and post-irradiated samples were performed to investigate the composition of carbides and the effect of irradiation on the composition of carbides. Carbides from unirradiated and irradiated specimens at grain boundaries were found to be enriched with Cr. For irradiated specimens, concentrations of Cr increased as the irradiation dose was increased. Cr enrichment could lead to precipitation of additional phase.  相似文献   

10.
We have studied the formation of InAs precipitates with dimensions of several nanometers in silicon by means of As (245 keV, 5 × 1016 cm−2) and In (350 keV, 4.5 × 1016 cm−2) implantation at 500 °C and subsequent annealing at 900 °C for 45 min. RBS, SIMS, TEM/TED, RS and PL techniques were used to characterize the implanted layers. The surface density of the precipitates has been found to be about 1.2 × 1011 cm−2. Most of the crystallites are from 3 nm to 6 nm large. A band at 1.3 μm has been registered in the low-temperature PL spectra of (As + In) implanted and annealed silicon crystals. The PL band position follows the quantum confinement model for InAs.  相似文献   

11.
The stray magnetic field of domains on the surface of Nd17Fe17Cu5B5 and SmFe10Ti89 samples was visualized by emission electron microscopy in the regime without restriction of the electron rays by a contrast aperture. The distribution of the tangential and normal components of the magnetic field on the surface under study was derived from the image contrast. The experimental uncertainty of the performed quantitative measurements of the magnetic field is estimated as 15-20%, however, the applied technique has a principal error that is several times smaller.  相似文献   

12.
The effects of thermal annealing and 350 keV As+ ion implantation on interdiffusion processes in a c-Si/Ti/TiN system were analysed. The Ti/TiN contacts were deposited by sputtering (Ti, 100 nm) and by reactive sputtering (TiN, 50 nm) on (111) n-Si wafers. Characterization included RBS, SEM and XRD analysis and electrical measurements. During vacuum annealing, interdiffusion is observed at the Si/Ti interface, where intermixing and growth of silicides takes place at 600° C and at higher temperatures. Annealing in a nitrogen atmosphere induces changes in surface morphology and stoichiometry of TiN, which does not affect the reaction at Si/Ti. Implantation of As+ to doses above 3.9 × 1014 ions/cm2 enhances intermixing at the Si/Ti interface during post-implantation annealing, while the TiN overlayer is unaffected in structure and morphology.  相似文献   

13.
14.
The decomposition of GaAs and InP surfaces during scanned electron-beam rapid thermal annealing (RTA) has been investigated. The molecules evaporated from the uncapped surfaces during annealing were collected on Si substrates and analysed using 2.0 and 3.5 MeV 4He Rutherford backscattering (RBS). The evaporation behaviour was determined in the temperature ranges 600–830° C (GaAs) and 450–630° C (InP). Deep-level transient spectroscopy, current-voltage and capacitance-voltage measurements were used to characterize the electrical properties of the annealed samples. Comparison of RBS and electrical measurements yields an optimum annealing temperature for the chosen annealing technique.  相似文献   

15.
Al2O3 thin films find wide applications in optoelectronics, sensors, tribology etc. In the present work, Al2O3 films prepared by electron beam evaporation technique are irradiated with 100 MeV swift Si7+ ions for the fluence in the range 1 × 1012 to 1 × 1013 ions cm−2 and the structural properties are studied by glancing angle X-ray diffraction. It shows a single diffraction peak at 38.2° which indicates the γ-phase of Al2O3. Further, it is observed that as the fluence increases up to 1 × 1013 ions cm−2 the diffraction peak intensity decreases indicating amorphization. Surface morphology studies by atomic force microscopy show mean surface roughness of 34.73 nm and it decreases with increase in ion fluence. A strong photoluminescence (PL) emission with peak at 442 nm along with shoulder at 420 nm is observed when the samples are excited with 326 nm light. The PL emission is found to increase with increase in ion fluence and the results are discussed in detail.  相似文献   

16.
Flash-assisted rapid thermal processing (fRTP) has gained considerable interests for fabrication of ultra-shallow junction in silicon. fRTP can significantly reduce boron diffusion, while attaining boron activation at levels beyond the limits of traditional rapid thermal annealing. The efficiency of fRTP for defect annealing, however, needs to be systematically explored. In this study, a (1 0 0) silicon wafer was implanted with 500 eV boron ions to a fluence of 1 × 1015 cm−2. fRTP was performed with peak temperatures ranging from 1100 °C to 1300 °C for approximately one milli-second. High resolution transmission electron microscopy and secondary ion mass spectrometry were performed to characterize as-implanted and annealed samples. The study shows that fRTP at 1250 °C can effectively anneal defects without causing boron tail diffusion.  相似文献   

17.
Electron beam radiation was applied to prepare nano-size copper in water system using polyvinyl alcohol, sodium dodecyl benzene sulfonate, gluten and polyethylene glycol as the surfactants, respectively. The irradiated products were characterized by XRD, TEM and LSPSDA. The XRD and TEM showed that relative pure copper products with an average size of 20 nm, 40 nm and 20 nm can be obtained by using gluten, PEG and SDBS as surfactant, respectively. An admixture of copper and cuprous oxide was obtained in PVA system. The LSPSDA showed that the size of the Cu nanoparticles decreased with increasing the glutin concentration.  相似文献   

18.
The synthesis of buried silicon nitride insulating layers was carried out by SIMNI (separation by implanted nitrogen) process using implantation of 140 keV nitrogen (14N+) ions at fluence of 1.0 × 1017, 2.5 × 1017 and 5.0 × 1017 cm−2 into 〈1 1 1〉 single crystal silicon substrates held at elevated temperature (410 °C). The structures of ion-beam synthesized buried silicon nitride layers were studied by X-ray diffraction (XRD) technique. The XRD studies reveal the formation of hexagonal silicon nitride (Si3N4) structure at all fluences. The concentration of the silicon nitride phase was found to be dependent on the ion fluence. The intensity and full width at half maximum (FWHM) of XRD peak were found to increase with increase in ion fluence. The Raman spectra for samples implanted with different ion fluences show crystalline silicon (c-Si) substrate peak at wavenumber 520 cm−1. The intensity of the silicon peak was found to decrease with increase in ion fluence.  相似文献   

19.
It has formerly been shown that low-damage levels, produced during the implantation doping of diamond as a semiconductor, anneal easily while high levels “graphitize” (above about 5.2 × 1015 ions/cm2). The difference in the defect types and their profiles, in the two cases, has never been directly observed. We have succeeded in using cross-section transmission electron microscopy to do so. The experiments were difficult because the specimens must be polished to ∼40 μm thickness, then implanted on edge and annealed, before final ion beam thinning to electron transparency. The low-damage micrographs reveal some deeply penetrating dislocations, whose existence had been predicted in earlier work.  相似文献   

20.
The 50 MeV silicon ion irradiation induced modifications on structural, optical and dielectric properties of solution grown glycine monophosphate (GMP) crystals were studied. The high-resolution X-ray diffraction study shows the unaltered value of integrated intensity on irradiation. The dielectric constant as a function of frequency and temperature was studied. UV-visible studies reveal the decrease in bandgap values on irradiation and presence of F-centers. The fluorescence spectrum shows the existence of some energy levels, which remains unaffected after irradiation. The scanning electron micrographs reveal the defects formed on irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号