首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The goal of this study was to evaluate the potential of an advanced oxidation process (AOP) for microbiocidal and virucidal inactivation. The viruses chosen for this study were bacteriophage MS2, T4, and T7. In addition, Bacillus subtilis spores and Escherichia coli were studied. By using H(2)O(2) in the presence of filtered ultraviolet (UV) irradiation (UV/H(2)O(2)) to generate wavelengths above 295nm, the direct UV photolysis disinfection mechanism was minimized, while disinfection by H(2)O(2) was also negligible. Virus T4 and E. coli in phosphate buffered saline (PBS) were sensitive to >295nm filtered UV irradiation (without H(2)O(2)), while MS2 was very resistant. Addition of H(2)O(2) at 25mg/l in the presence of filtered UV irradiation over a 15min reaction time did not result in any additional disinfection of virus T4, while an additional one log inactivation for T7 and 2.5 logs for MS2 were obtained. With E. coli, only a slight additional effect was observed when H(2)O(2) was added. B. subtilis spores did not show any inactivation at any of the conditions used in this study. The OH radical exposure (CT value) was calculated to present the relationship between the hydroxyl radical dose and microbial inactivation.  相似文献   

2.
Silver modified activated carbon doped zinc oxide (Ag/AC-ZnO) was synthesized via a calcination-electroless deposition route. The samples were characterized by X-ray powder diffractometry, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and UV–vis diffuse reflectance spectroscopy. The photocatalytic activity of the Ag/AC-ZnO was evaluated for bisphenol A degradation in the presence of H2O2 under visible light irradiation. The archived results showed that the photocatalytic activity of the Ag/AC-ZnO was higher than that of AC-ZnO and pure ZnO. The cytotoxicity of the bisphenol A after photocatalysis under visible light irradiation was tested using L929 mouse fibroblast cells and the obtained results indicated that the treated bisphenol A solution exhibited no cytotoxicity against normal cells.  相似文献   

3.
Au nanoparticles supported on highly uniform one-dimensional ZnO nanowires (Au/ZnO hybrids) have been successfully fabricated through a simple wet chemical method, which were first used for photodegradation of gas-phase benzene. Compared with bare ZnO nanowires, the as-prepared Au/ZnO hybrids were found to possess higher photocatalytic activity for degradation of benzene under UV and visible light (degradation efficiencies reach about 56.0% and 33.7% after 24 h under UV and visible light irradiation, respectively). Depending on excitation happening on ZnO semiconductor or on the surface plasmon band of Au, the efficiency and operating mechanism are different. Under UV light irradiation, Au nanoparticles serve as an electron buffer and ZnO nanowires act as the reactive sites for benzene degradation. When visible light is used as the light irradiation source, Au nanoparticles act as the light harvesters and photocatalytic sites alongside of charge-transfer process, simultaneously.  相似文献   

4.
Fe3+-doped TiO2 (Fe-TiO2) porous microspheres were prepared by controlled hydrolysis of Ti(OC4H9)4 with water generated "in situ" via an esterification reaction between acetic acid and ethanol, followed by hydrothermal treatment. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic absorption flame emission spectroscopy (AAS), electron paramagnetic resonance (EPR) spectrum, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), and nitrogen adsorption-desorption methods. All of the undoped TiO2 and Fe-TiO2 samples exclusively consist of primary anatase crystallites, which further form porous microspheres with diameters ranging from 150 to 500 nm. The photocatalytic activity of Fe-TiO2 catalysts was evaluated from the photodegradation of methyl orange (MO) aqueous solution both under UV and visible light irradiation. Fe3+ doping effectively improves the photocatalytic activity under both UV light irradiation and visible light irradiation with an optimal doping concentration of 0.1 and 0.2%, respectively. The photocatalytic mechanisms of Fe-TiO2 catalysts were tentatively discussed.  相似文献   

5.
为了提高TiO2/Ti光电极在可见光下的光电催化活性,采用阳极氧化法制备了一种新型的硫掺杂TiO2/Ti光电极.采用扫描电子显微镜、X射线衍射、X射线荧光光谱等技术对光电极进行了表面形貌、结晶形态、晶粒尺寸、硫的掺杂量和价态以及吸光性能表征.研究表明:硫掺杂TiO2/Ti光电极的最佳制备条件为:成膜电压160V、电流密度100mA/cm2、Na2SO3质量浓度750mg/L;所制备的光电极具有良好的光电催化氧化降解邻苯二甲酸二甲酯活性,并能有效地矿化其中间产物;与TiO2/Ti电极相比,硫的掺杂可以显著提高其在可见光下的光电催化性能.  相似文献   

6.
The goal of the present study was to investigate the photocatalytic efficiency of titanium dioxide (TiO 2) formed on titanium (Ti) bead substrate (referred herein as TiO 2 /Ti beads) by heat treatment when exposing to ultraviolet (UV) light irradiation.Escherichia coli was used as the model test organism.The results show 4-log and 7-log decrease in bacterial concentration after a test time of 15 and 120 min,respectively,using TiO 2 /Ti beads irradiated with UV light in a tin-foil covered beaker.This article presents the potential of TiO 2 on Ti bead substrate formed by simple heat-treatment together with UV light for bacterial inactivation.  相似文献   

7.
Cao H  Xiao Y  Zhang S 《Nanotechnology》2011,22(1):015604
This paper reports the synthesis of semiconductor ZnSe microspheres composed of nanoparticles via a solvothermal route between the organic molecule selenophene (C(4)H(4) Se) and ZnCl(2) without adding any surfactant. The ZnSe microspheres were characterized by x-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), specific surface area measurement, and photoluminescence (PL) spectra. A strong and broad blue PL emission at 443 nm in wavelength (~2.79 eV in photon energy) is attributed to the near-band-edge (NBE) emission of ZnSe, while the 530 nm peak is a defect-related (DL) emission. The photocatalytic activity of the as-prepared ZnSe microspheres was evaluated by photodegradation of methyl orange (MO) dye under ultraviolet (UV) light and visible light irradiation. The degradations of MO reach 94% or 95.1%, close to 100%, in the presence of the as-synthesized ZnSe microspheres or commercial ZnSe powder after 7 or 10 h under UV irradiation, respectively. Meanwhile the degradations of MO reach 94.3% or 60.6% in the presence of the as-synthesized ZnSe microspheres or commercial ZnSe powder after 12 h, respectively. The degradation rate of ZnSe microspheres is twice that of ZnSe commercial powder under UV light irradiation, and three times under visible light irradiation. The degradation process of MO dye on ZnSe microspheres under UV or visible light is also discussed.  相似文献   

8.
Au/ZnO nanocomposites have been prepared by a simple chemical method. For the first time, the nanocomposites were directly used as photocatalysts for hydroxylation of aromatic hydrocarbons under UV and visible light irradiation. The results show that the as-prepared photocatalysts display high photocatalytic activity for UV and visible catalytic hydroxylation of benzene. Without the assistance of any solvent or additive, high selectivity and high conversion efficiency were still obtained. Different photocatalytic mechanisms were proposed depending on whether excitation happens on ZnO semiconductor or on the surface plasmon band of Au. The former is Au nanoparticles act as electron buffer due to irradiation by UV light and ZnO nanoparticles as reactive sites for hydroxylation of benzene, the latter is that Au nanoparticles act as light harvesters and inject electrons into ZnO conduction band and as photocatalytic sites under visible light irradiation.  相似文献   

9.
The exploitation of photocatalysts that harvest solar spectrum as broad as possible remains a high‐priority target yet grand challenge. In this work, for the first time, metal–organic framework (MOF) composites are rationally fabricated to achieve broadband spectral response from UV to near‐infrared (NIR) region. In the core–shell structured upconversion nanoparticles (UCNPs)‐Pt@MOF/Au composites, the MOF is responsive to UV and a bit visible light, the plasmonic Au nanoparticles (NPs) accept visible light, whereas the UCNPs absorb NIR light to emit UV and visible light that are harvested by the MOF and Au once again. Moreover, the MOF not only facilitates the generation of “bare and clean” Au NPs on its surface and realizes the spatial separation for the Au and Pt NPs, but also provides necessary access for catalytic substrates/products to Pt active sites. As a result, the optimized composite exhibits excellent photocatalytic hydrogen production activity (280 µmol g?1 h?1) under simulated solar light, and the involved mechanism of photocatalytic H2 production under UV, visible, and NIR irradiation is elucidated. Reportedly, this is an extremely rare study on photocatalytic H2 production by light harvesting in all UV, visible, and NIR regions.  相似文献   

10.
Titanium dioxide (TiO2) photocatalytic powder materials doped with various levels of manganese (Mn) were synthesized to be used as additives to wall painting in combating indoor and outdoor air pollution. The heterogeneous photocatalytic degradation of gaseous acetaldehyde (CH3CHO) on Mn-TiO2 surfaces under ultraviolet and visible (UV/Vis) irradiation was investigated, by employing the Photochemical Static Reactor coupled with Fourier-Transformed Infrared spectroscopy (PSR/FTIR) technique. Experiments were performed by exposing acetaldehyde (~ 400 Pa) and synthetic air mixtures (~ 1.01 × 105 Pa total pressure) on un-doped TiO2 and doped with various levels of Mn (0.1-33% mole percentage) under UV and visible irradiation at room temperature. Photoactivation was initiated using either UV or visible light sources with known emission spectra. Initially, the photo-activity of CH3CHO under the above light sources, and the physical adsorption of CH3CHO on Mn-TiO2 samples in the absence of light were determined prior to the photocatalytic experiments. The photocatalytic loss of CH3CHO on un-doped TiO2 and Mn-TiO2 samples in the absence and presence of UV or visible irradiation was measured over a long time period (≈ 60 min), to evaluate their relative photocatalytic activity. The gaseous photocatalytic end products were also determined using absorption FTIR spectroscopy. Carbon dioxide (CO2) was identified as the main photocatalysis product. It was found that 0.1% Mn-TiO2 samples resulted in the highest photocatalytic loss of CH3CHO under visible irradiation. This efficiency was drastically diminished at higher levels of Mn doping (1-33%). The CO2 yields were the highest for 0.1% Mn-TiO2 samples under UV irradiation, in agreement with the observed highest CH3CHO decomposition rates. It was demonstrated that low-level (0.1%) doping of TiO2 with Mn results in a significant increase of their photocatalytic activity in the visible range, compared to un-doped TiO2. This elevated activity is lost at high doping levels (1-33%). Finally, the photocatalytic degradation mechanism of CH3CHO on 0.1% Mn-TiO2 surfaces under visible irradiation leading to low CO2 yields is different than that under UV irradiation resulting to high CO2 yields.  相似文献   

11.
The use of TiO2 as photocatalyst to degrade the organic compounds is an effective method of oxidation process and has been widely studied in environmental engineering. However, TiO2 absorbed the UV light which is only small part of sunlight reaching earth surface to activate photocatalytic procedure effectively is a major disadvantage. Therefore, studies on the development of new TiO2 wherein its photocatalytic activity can be activated by visible light which is the major part of sunlight will be valuable for field application. In this study, we evaluate the photocatalytic degrading efficiency of porphyrins/TiO2 complexes on the organic pollutants under irradiation with visible light (λ = 419 nm). The results showed that the photodecomposition efficiency of 2,4-dichlorophenol (2,4-DCP) wastewater by using porphyrin/TiO2 irradiated under visible light for 4 h was up to 42-81% at pH 10. These evidences reveal that the system of porphyrin/TiO2 complexes has also significantly efficiency of photocatalytic degradation for some hazardous or recalcitrant pollutants under visible light irradiation.  相似文献   

12.
Heterojunction construction with low band gap materials is an effective way of utilizing UV light active materials under visible light irradiation. Here, we report the synthesis of Bi2(O,S)3/Zn(O,S) heterostructure using simple solvothermal method without surfactant. The catalysts were investigated with different characterization techniques. All the composite catalysts showed high light absorption capacity in the whole visible light spectrum. The catalytic activity of the catalysts was evaluated by Cr(VI) reduction. While pure Zn(O,S) catalyst showed no significant Cr(VI) reduction, higher photocatalytic activity than individual components were exhibited after heterojunction construction with Bi2(O,S)3. 20-BiZnOS catalyst with Bi/Zn molar percentage of 20% showed the best photocatalytic activity among the composites with 99.5% Cr(VI) reduction within 12 min under visible light irradiation. Heterojunction formation between Bi2(O,S)3 and Zn(O,S) nanoparticle, and selective adsorption of Cr(VI) and desorption of Cr(III) on the surface of 20-BiZnOS composite catalyst were ascribed to the enhanced photocatalytic activity of the composite catalyst.  相似文献   

13.
Nanosized Bi2WO6, PbWO4 and ZnWO4 photocatalysts were synthesized by a mild hydrothermal crystallization process. The physical and photophysical properties of the catalysts were characterized by X-ray diffractometry, Brunauer-Emmet-Teller surface area and porosity measurements, transmission electron microscopy, Raman spectra, and diffused reflectance spectroscopy. The rhodamine-B photodegradation in aqueous medium was employed as a probe reaction to test the photoactivities of the as-prepared samples under four irradiation wavelengths. Bi2WO6 not only presented the photocatalytic activity in the wide spectral scope, including UV and visible light but also exhibited the strong photosensitized capability to transform RhB under visible light irradiation (λ > 490 nm). ZnWO4 only displayed relatively high photoactivity under UV irradiation. However, PbWO4 showed poor photoactivity under any light irradiation. On the basis of the calculated density functional theory (DFT), the photocatalytic mechanisms were discussed.  相似文献   

14.
《Materials Letters》2005,59(29-30):4016-4019
The stability of eleven metal phthalocyanine sulfonates against UV (λ > 320 nm) or visible light (λ > 450 nm) in the presence of TiO2 semiconductor was studied in an aqueous medium. Although all the dyes were quite photostable in a homogeneous solution, they underwent notably photobleaching in the presence of TiO2. The degree of dye bleaching was strongly dependent on the central metal in the complex, whereas for each complex the bleaching rate under UV irradiation was much faster than that under visible light irradiation. The spectral analysis showed that the dye photobleaching led to complete destruction of the phthalocyanine ring. In addition, the visible light stability of the dye was greatly affected by physical properties of TiO2 semiconductor, and the dye photostability could be improved by addition of electron sacrifice such as 4-chlorophenol.  相似文献   

15.
采用高温固相法合成了具有可见光响应的Ag掺杂的K2La2Ti3O10催化剂,利用XRD、UV-VisDRS、TEM和XPS对催化剂进行了表征。考察了催化剂的可见光催化分解甲醇水溶液制氢的活性,并对可见光催化机理进行了分析。研究表明,Ag的掺杂没有改变K2La2Ti3O10的微晶结构,并使催化剂粒径有所减小。紫外-可见漫反射分析表明禁带宽度为2.8eV左右,对可见光具有较高吸收。担载2%(质量分数)Pt后,在可见光下光催化活性较K2La2Ti3O10大大提高,掺杂1%(摩尔分数)Ag的K2La2Ti3O10的产氢量为0.37mmol,而纯K2La2Ti3O10的产氢量只有0.037mmol;掺杂1%(摩尔分数)Ag的K2La2Ti3O10的产氢速率最大0.08mmol/h。  相似文献   

16.
Synthesis and photo-degradation application of WO3/TiO2 hollow spheres   总被引:1,自引:0,他引:1  
Lv K  Li J  Qing X  Li W  Chen Q 《Journal of hazardous materials》2011,189(1-2):329-335
A WO(3)/TiO(2) composite, hollow-sphere photocatalyst with average diameter of 320 nm and shell thickness of 50 nm was successfully prepared using a template method. UV-vis diffuse reflectance spectra illustrated that the main absorption edges of the WO(3)/TiO(2) hollow spheres were red-shifted compared to the TiO(2) hollow spheres, indicating an extension of light absorption into the visible region of the composite photocatalyst. The WO(3) and TiO(2) phases were confirmed by X-ray diffraction analysis. BET isotherms revealed that the specific surface area and average pore diameter of the hollow spheres were 40.95 m(2)/g and 19 nm, respectively. Photocatalytic experiments indicate that 78% MB was degraded by WO(3)/TiO(2) hollow spheres under visible light within 80 min. Under the same conditions, only 24% MB can be photodegraded by TiO(2). The photocatalytic mineralization of MB, catalyzed by TiO(2) and WO(3)/TiO(2), proceeded at a significantly higher rate under UV irradiation than that under visible light, and more significant was the increase in the apparent rate constant with the WO(3)/TiO(2) composite semiconductor material which was 3.2- and 3.5-fold higher than with the TiO(2) material under both UV and visible light irradiation. The increased photocatalytic activity of the coupled nanocomposites was attributed to photoelectron/hole separation efficiency and the extension of the wavelength range of photoexcitation.  相似文献   

17.
In this study, a novel porphyrin dye, 5, 10, 15, 20-tetraphenyl-21H, 23H-porphine nickel (TPPN) doped TiO2 (TiO2/TPPN) thin film with visible light respondency was prepared using a sol-gel method and characterized with XRD, SEM, UV-Vis instruments. The observation showed that the absorption edge of TPPN dye-doped thin film shifted into the visible light region. The photocatalytic indigo carmine degradation results showed that under visible light irradiation (lambda > 400 nm) for 6 hrs, the photocatalytic activity of TiO2 thin film sensitized with 200 microM of TPPN dye showed the best performance, with an indigo degradation ratio up to 96%. Moreover, the TiO2/TPPN thin film showed a relevant photocatalytic bactericidal effect on Erwinia carotovora subsp. carotovora 7 induced vegetable soft rot disease in the visible spectral region. Evidence for the photocatalytic disinfection technique against a plant pathogen under visible light irradiation will have potential for direct application in future control of plant diseases in irrigation water systems.  相似文献   

18.
《Advanced Powder Technology》2019,30(12):3193-3202
Ag/AgCl-GO composite was fabricated by deposition–precipitation method and photoplasmic reduction method at room temperature. The resulting products were characterized by XRD, XPS, SEM, TEM, Zeta potential and UV–Vis DRS. The results indicated that the samples were composed of Ag, AgCl and graphene oxide (GO). During the photoreduction, the crystallinity of Ag0 particles gradually increased with prolonging the time of UV irradiation, then remained stable after 90 min. The addition of GO had little effect on the crystal structure of Ag/AgCl, however, this reduced the particle size and enhances the dispersibility of the composite. After 100 min of visible light irradiation, the degradation efficiency of rhodamine B (RhB) reached 98.43%. Therefore, the Ag/AgCl-GO photocatalyst exhibited significant photocatalytic activity during the degradation of RhB under visible light.  相似文献   

19.
In this article, we present a fast and simple method to produce TiO2 nanospheres–graphene nanocomposite with high photocatalytic activity under visible and UV light irradiation. TiO2 nanospheres were adsorbed on graphene in sol–gel process. First, titanium (IV) butoxide underwent hydrolysis in graphene oxide (GO) ethanol solution resulting in TiO2 nanospheres deposition on GO. Next, the material was calcinated to generate the phase transition of TiO2 into anatase and reduce GO to graphene. The detailed characterization of the material was performed via transmission electron microscopy, energy dispersive X-rays spectrometer, Fourier-transformed infrared spectroscopy, X-ray diffraction, and Raman spectroscopy. Interestingly, the band-gap energy of the prepared photocatalyst was drastically decreased in comparison with the commercial photocatalyst P25 from 3.05 to 2.36 eV. This influenced in the activation of the material under visible light and resulted in high photocatalytic activity in the process of phenol decomposition in visible and UV irradiation.  相似文献   

20.
首先合成高结晶度的BiOBr纳米片,然后利用光化学气相沉积(PCVD)法将不同含量的Pd纳米粒子沉积在BiOBr纳米片上.运用N,一物理吸附.脱附、x射线粉末衍射(XRD)、透射电镜(TEM)、x射线光电子能谱(xIX3)、光致发光(PL)谱、紫外可见漫反射吸收光谱(uV-VisDRS)技术对合成的Pd/BiOBr进行了表征.考察了Pd含量对BiOBr光吸收性能和紫外光(A=254am)、可见光下对染料酸性橙Ⅱ的光催化降解性能的影响.结果表明,沉积Pd对样品的比表面积影响不大,Pd纳米粒子能在一定程度上增强催化剂对可见光的吸收能力,并显著抑制光生电子和空穴的复合.紫外光下,当Pd的质量分数为0.5%时,BiOBr催化降解染料的活性提高到1.6倍,而在可见光下含4%的Pd能使BiOBr表现出最高的催化活性,为纯BiOBr的1.5倍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号