首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Fatih Camci 《工程优选》2013,45(2):119-136
Recent technical advances in condition-based maintenance technology have made it possible to not only diagnose existing failures, but also forecast future failures, which is called prognostics. A common method of maintenance scheduling in condition-based maintenance is to apply thresholds to prognostics information, which is not appropriate for systems consisting of multiple serially connected machinery. Maintenance scheduling is defined as a binary optimization problem and has been solved with a genetic algorithm. In this article, various binary particle swarm optimization methods are analysed and compared with each other and a genetic algorithm on a maintenance-scheduling problem for condition-based maintenance systems using prognostics information. The trade-off between maintenance and failure is quantified as the risk to be minimized. The forecasted failure probability of serially connected machinery is utilized in the analysis of the whole system. In addition to the comparison of a genetic algorithm and binary particle swarm optimization methods, a new binary particle swarm optimization that combines the good sides of two binary particle swarm optimizations is presented.  相似文献   

2.
Failure behavior of Zn coated Fe is simulated through molecular dynamics (MD) and the energy absorbed at the onset of failure along with the corresponding strain of the Zn lattice are computed for different levels of applied shear rate, temperature and thickness. Data-driven models are constructed by feeding the MD results to an evolutionary neural network. The outputs of these neural networks are utilized to carry out a multi-objective optimization through genetic algorithms, where the best possible tradeoffs between two conflicting requirements, minimum deformation and maximum energy absorption at the onset of failure, are determined by constructing a Pareto frontier.  相似文献   

3.
The role of technical specifications and maintenance (TSM) activities at nuclear power plants (NPP) aims to increase reliability, availability and maintainability (RAM) of Safety-Related Equipment, which, in turn, must yield to an improved level of plant safety. However, more resources (e.g. costs, task force, etc.) have to be assigned in above areas to achieve better scores in reliability, availability, maintainability and safety (RAMS). Current situation at NPP shows different programs implemented at the plant that aim to the improvement of particular TSM-related parameters where the decision-making process is based on the assessment of the impact of the change proposed on a subgroup of RAMS+C attributes.This paper briefly reviews the role of TSM and two main groups of improvement programs at NPP, which suggest the convenience of considering the approach proposed in this paper for the Integrated Multi-Criteria Decision-Making on changes to TSM-related parameters based on RAMS+C criteria as a whole, as it can be seem as a decision-making process more consistent with the role and synergic effects of TSM and the objectives and goals of current improvement programs at NPP. The case of application to the Emergency Diesel Generator system demonstrates the viability and significance of the proposed approach for the Multi-objective Optimization of TSM-related parameters using a Genetic Algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号