首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hard turning has become an alternative machining process for grinding processes of hardened steels. One challenge during hard turning is the increasing wear during the operation time of the tool and the hereby influenced workpiece surface and subsurface properties. This causes unfavorable changes of the microstructure and residual stress state or rather damages of the subsurface. Important factors are the contact conditions between the tool and the workpiece. The width of flank wear land influences the size of the passive force significantly. This has a direct impact on the subsurface properties of the workpiece. One solution is to modify the contact conditions and thereby the specific mechanical and thermal loads that are applied to the tool as well as to the workpiece. This article presents an experimental approach of modified corner radius geometry of cutting tools for hard turning processes. Hereby, the size and direction of the contact length of the cutting edge are adjusted as well as the load impact during machining. The aim is to reduce the tool wear performance. The results show the potential of the load-specific tool design concerning the tool wear and the workpiece subsurface properties. Furthermore, a new approach for predicting the process forces during hard turning is presented.  相似文献   

2.
Tool wear and machining performance of hardened AISI M2 steel in hard turning has been studied. Ceramic tools were used in the cutting tests without coolants, and the workpiece was heat treated to increase its hardness up to Re 60. Cutting forces, temperature, and tool wear were measured in the experiments and the effects of cutting conditions on these were investigated. Important aspects from the research are summarized as follows: 1. Flank wear was the dominant wear mode on the ceramic tool insert in hard turning. In contrast, crater wear was very small due to the ceramics high resistance against chemical reactions at high temperature. A notch was unlikely to be formed in the tool.

2. The initial flank wear rate mainly depends on the feed rate. High feed rates cause a high initial flank wear rate.

3. Depth of cut was the most important cutting parameter to affect cutting force variation, and the cutting force increased due to tool wear.

  相似文献   

3.
In this paper, the effects of cutting speed, depth of cut, feed, workpiece hardness (51, 55, 58, 62, and 65?±?1 HRC), tool flank wear, and nose radius on three-component forces in finish dry hard turning (FDHT) of the hardened tool steel AISI D2 were experimentally investigated by utilizing the PCBN inserts. Experimental results showed that the feed force is the lowest in three-component forces and influence of cutting parameters on it is less than two others in the FDHT of AISI D2. Values of the radial force are higher than those of the cutting force when cutting speed, depth of cut, and feed range from 75 to 301 m/min, and 0.10 to 0.40 and 0.05 to 0.20 mm, respectively, but lower in the range between 0.8- and 1.6-mm nose radius. Values of the cutting force are higher than those of the radial force as the workpiece hardness varies from 51 to 58?±?1 HRC while lower in the range between 62 and 65?±?1 HRC. Besides, there are relations between the changing laws of three-component forces and the softening effect of chip, cohesion effect in the tool–chip junction zone, and intenerating effect of metal in the workpiece surface. The high flank wear formation increases the contact with workpiece surface and hence induces tearing–drawing and welding effect duo to instantaneous high temperature.  相似文献   

4.
H13淬硬模具钢精车过程的数值模拟   总被引:4,自引:0,他引:4  
闫洪  夏巨谌 《中国机械工程》2005,16(11):985-989
采用热力学耦合有限元方法研究了淬硬钢精车过程中切屑形成规律。运用H13 淬硬模具钢流动应力模型进行数值模拟,考查了H13淬硬模具钢精车过程中工艺参数对工件性能和刀具的影响。结果表明:切削速度愈高,进给量愈小,刀具刀尖半径愈大,则工件加工层上的静水拉应力愈小,表面质量愈好; 淬硬钢精车时径向力起主要作用,大于切削力;切削速度愈大,切削力和径向力则愈小,愈有助于改善工件加工层上的表面质量;切削速度、进给量和刀具刀尖圆角半径愈大,工件和刀具温度愈高,愈易导致刀具前刀面扩散磨损和刀具后刀面磨损。研究结论有助于优化H13淬硬模具钢精车过程中工艺参数选择和改进刀具镶片设计。  相似文献   

5.
Flank wear of an alumina-based ceramic cutting tool was determined in hard turning two workpieces (AISI 4340 and 52100 hardened steels) at three cutting speeds (142, 181, and 264?m/min) to devise a real-time monitoring system. Results of the six turning tests were assessed using Kruskal?CWallis test, regression models, and linear trend analysis. Multiple non-linear regression models that explained variation in flank wear as a function of time (second) had a range of $ R_{\rm{adj}}^2 $ values of 27.7% for the test 4340-142 to 95% for the test 52100-181. Linear trend models revealed that the highest flank wear rate of the ceramic cutting tool belonged to the test 52100-181. Interaction effect of the three cutting speeds and the two workpiece types was determined to account for 82.2% of variation in flank wear (P?<?0.001). The real-time monitoring system designed in this study appeared to be promising in terms of determining and quantifying flank wear behavior of the ceramic cutting tool and optimal hard turning conditions.  相似文献   

6.
研究了BN250断续车削淬火钢SAE8822十字轴的磨损现象。试验结果显示微崩刃是断续车削中导致刀具失效的主要因素,工件与BN250刀具元素之间的化学反应和扩散作用削弱了结合剂与CBN基体直接的结合强度,是导致刀具破损发生的主要因素。  相似文献   

7.
High-speed machining has been receiving growing attention and wide applications in modern manufacture. Extensive research has been conducted in the past on tool flank wear and crater wear in high-speed machining (such as milling, turning, and drilling). However, little study was performed on the tool edge wear??the wear of a tool cutting edge before it is fully worn away??that can result in early tool failure and deteriorated machined surface quality. The present study aims to fill this important research gap by investigating the effect of tool edge wear on the cutting forces and vibrations in 3D high-speed finish turning of nickel-based superalloy Inconel 718. A carefully designed set of turning experiments were performed with tool inserts that have different tool edge radii ranging from 2 to 62???m. The experimental results reveal that the tool edge profile dynamically changes across each point on the tool cutting edge in 3D high-speed turning. Tool edge wear increases as the tool edge radius increases. As tool edge wear dynamically develops during the cutting process, all the three components of the cutting forces (i.e., the cutting force, the feed force, and the passive force) increase. The cutting vibrations that accompany with dynamic tool edge wear were analyzed using both the traditional fast Fourier transform (FFT) technique and the modern discrete wavelet transform technique. The results show that, compared to the FFT, the discrete wavelet transform is more effective and advantageous in revealing the variation of the cutting vibrations across a wide range of frequency bands. The discrete wavelet transform also reveals that the vibration amplitude increases as the tool edge wear increases. The average energy of wavelet coefficients calculated from the cutting vibration signals can be employed to evaluate tool edge wear in turning with tool inserts that have different tool edge radii.  相似文献   

8.
G. Poulachon  A. Moisan  I. S. Jawahir 《Wear》2001,250(1-12):576-586
Hard turning is a turning operation performed on high strength alloy steels (45Ra0.1 μm). Extensive research being conducted on hard turning has so far addressed several fundamental questions concerning chip formation mechanisms, tool-wear, surface integrity and geometric accuracy of the machined components. The major consideration for the user of this relatively newer technology is the quality of the parts produced. A notable observation from this research is that flank wear of the cutting tool has a large impact on the quality of the machined parts (surface finish, geometric accuracy and surface integrity). For components with surface, dimensional and geometric requirements (e.g. bearing surfaces), hard turning technology is often not economical compared with grinding because tool-life is limited by the tolerances required (i.e. high flank wear rate).

The aim of this paper is to present the various modes of wear and damage of the polycrystalline cubic boron nitrides (PCBN) cutting tool under different loading conditions, in order to establish a reliable wear modeling. Flank wear has a large impact on the quality of the parts produced and the wear mechanisms have to be understood to improve the performance of the tool material, namely by reducing the flank wear rate. The wear mechanisms depend not only on the chemical composition of the PCBN, and the nature of the binder phase, but also on the hardness value and above all on the microstructure (percentage of martensite, type, size, composition of the hard phases, etc.) of the machining work material. The proposed modeling is in a generalized form of the extended Taylor’s law allowing to prediction of the tool-life as a function of the cutting parameters and of the workpiece hardness. The effects of these factors on tool-wear, tool-life and cutting forces are discussed in the paper.  相似文献   


9.
The present work deals with some machinability studies on flank wear, surface roughness, chip morphology and cutting forces in finish hard turning of AISI 4340 steel using uncoated and multilayer TiN and ZrCN coated carbide inserts at higher cutting speed range. The process has also been justified economically for its effective application in hard turning. Experimental results revealed that multilayer TiN/TiCN/Al2O3/TiN coated insert performed better than uncoated and TiN/TiCN/Al2O3/ZrCN coated carbide insert being steady growth of flank wear and surface roughness. The tool life for TiN and ZrCN coated carbide inserts was found to be approximately 19 min and 8 min at the extreme cutting conditions tested. Uncoated carbide insert used to cut hardened steel fractured prematurely. Abrasion, chipping and catastrophic failure are the principal wear mechanisms observed during machining. The turning forces (cutting force, thrust force and feed force) are observed to be lower using multilayer coated carbide insert in hard turning compared to uncoated carbide insert. From 1st and 2nd order regression model, 2nd order model explains about 98.3% and 86.3% of the variability of responses (flank wear and surface roughness) in predicting new observations compared to 1st order model and indicates the better fitting of the model with the data for multilayer TiN coated carbide insert. For ZrCN coated carbide insert, 2nd order flank wear model fits well compared to surface roughness model as observed from ANOVA study. The savings in machining costs using multilayer TiN coated insert is 93.4% compared to uncoated carbide and 40% to ZrCN coated carbide inserts respectively in hard machining taking flank wear criteria of 0.3 mm. This shows the economical feasibility of utilizing multilayer TiN coated carbide insert in finish hard turning.  相似文献   

10.
Monitoring of hard turning using acoustic emission signal   总被引:1,自引:0,他引:1  
Monitoring of tool wear during hard turning is essential. Many investigators have analyzed the acoustic emission (AE) signals generated during machining to understand the metal cutting process and for monitoring tool wear and failure. In the current study on hard turning, the skew and kurtosis parameters of the root mean square values of AE signal (AERMS) are used to monitor tool wear. The rubbing between the tool and the workpiece increases as the tool wear crosses a threshold, thereby shifting the mass of AERMS distribution to right, leading to a negative skew. The increased rubbing also led to a high kurtosis value in the AERMS distribution curve.  相似文献   

11.
This study attributed to post treatment of tungsten carbide (WC) inserts using microwave irradiation. Tungsten carbide inserts were subjected to microwave radiation (2.45 GHz) to enhance its performance in terms of reduction in tool wear rate, cutting force surface roughness and improvement in tool life. Performance of tungsten carbide insert is very much affected by machine operating parameters i.e. speed, feed and depth of cut. An attempt has been made to investigate the effects of machining parameters on microwave treated tool inserts. This paper describes the comparative study of machining performance of untreated and microwave treated WC tool inserts used for turning of AISI 1040 steel. Machining performance has been evaluated in terms of flank wear, cutting force, surface roughness, tool wear mechanisms. Critical examinations of tool wear mechanisms and improvements in metallurgical properties such as microstructural change, phase activation of WC grains were identified using scanning electron microscope (SEM). Results obtained from the turning using the microwave treated tool inserts showed a significant reduction tool wear thereby enhancing the surface quality of workpiece.  相似文献   

12.
This study establishes an analytical basis for the prediction of chatter stability in the turning process in the presence of wear flat on the tool flank. The components contributing to the forcing function in the machine vibration dynamics are analyzed in the context of cutting force, contact force and Coriolis force. In this way, the effects of the displaced workpiece volume at the wear flat as well as the workpiece rotation in conjunction with its radial compliance can be incorporated in describing the motion of the vibration system. Laplace domain analysis provides the analytical solution for the limits of stability in terms of the machine characteristics, structural stiffness, cutting stiffness, specific contact force, cutting conditions and cutter geometry. Stability plots are presented to relate stiffness ratio to cutting velocity in the determination of chatter stability. Machining experiments at various cutting conditions were conducted to identify the characteristic parameters involved in the vibration system and to verify the analytical stability limits. The extent of tool wear effect and Coriolis effect on the stability of machining is discussed.  相似文献   

13.
Hard turning with ceramic tools provides an alternative to grinding operation in machining high precision and hardened components. But, the main concerns are the cost of expensive tool materials and the effect of the process on machinability. The poor selection of cutting conditions may lead to excessive tool wear and increased surface roughness of workpiece. Hence, there is a need to investigate the effects of process parameters on machinability characteristics in hard turning. In this work, the influence of cutting speed, feed rate, and machining time on machinability aspects such as specific cutting force, surface roughness, and tool wear in AISI D2 cold work tool steel hard turning with three different ceramic inserts, namely, CC650, CC650WG, and GC6050WH has been studied. A multilayer feed-forward artificial neural network (ANN), trained using error back-propagation training algorithm has been employed for predicting the machinability. The input?Coutput patterns required for ANN training and testing are obtained from the turning experiments planned through full factorial design. The simulation results demonstrate the effectiveness of ANN models to analyze the effects of cutting conditions as well as to study the performance of conventional and wiper ceramic inserts on machinability.  相似文献   

14.
Determining the temperature field in metal cutting when the tool flank is progressively worn requires the knowledge of the forces due to tool flank wear and that due to chip formation. In the past, these forces have been computed from data experimentally measured with a dynamometer, under the assumption that the chip formation configuration remained unaltered when the tool flank is progressively worn. This approach has been used in the literature even though there has been evidence that it is not correct. The error introduced by this doubtful assumption in computing the maximum surface temperature in the work-piece can be significant.

Of late there has been considerable interest in employing hard turning as the final finishing process in place of grinding and superfinishing. Consequently, the ability to accurately predict the maximum surface temperature and its distribution in the workpiece is now most desirable, for avoiding thermal damage to the machined surface. This paper discusses a new method based on the thickness of the microstructural change in chips to decouple the tool-flank forces for predicting the maximum surface temperature and its distribution in the workpiece.  相似文献   

15.
This paper presented a study of the relationship between cutting force and tool flank wear of solid carbide tool during the wet end milling Ti6Al4V. The modeling of 3D cutting force in end milling considering tool flank wear was discussed, which showed that for the given cutting conditions, tool geometries, and workpiece material, cutting force under the tool flank wear effect can be predicted easily and conveniently. In addition, the experimental work of end milling Ti6Al4V with solid carbide tool was developed to investigate the relationship between cutting force and tool flank wear, and comparison between experimental results and predicted results was discussed. The results showed that the proposed mathematical model can help to predict 3D cutting force under the tool flank wear effect with high accuracy.  相似文献   

16.
In recent years, hard machining using CBN and ceramic inserts became an emerging technology than traditional grinding and widely used manufacturing processes. However the relatively high cost factors associated with such tools has left a space to look for relatively low cost cutting tool materials to perform in an acceptable range. Multilayer coated carbide insert is the proposed alternative in the present study due to its low cost. Thus, an attempt has been made to have an extensive study on the machinability aspects such as flank wear, chip morphology, surface roughness in finish hard turning of AISI 4340 steel (HRC 47 ± 1) using multilayer coated carbide (TiN/TiCN/Al2O3/TiN) insert under dry environment. Parametric influences on turning forces are also analyzed. From the machinability study, abrasion and chipping are found to be the dominant wear mechanism in hard turning. Multilayer TiN coated carbide inserts produced better surface quality and within recommendable range of 1.6 μm i.e. comparable with cylindrical grinding. At extreme parametric conditions, the growth of tool wear was observed to be rapid thus surface quality affected adversely. The chip morphology study reveals a more favorable machining environment in dry machining using TiN coated carbide inserts. The cutting speed and feed are found to have the significant effect on the tool wear and surface roughness from ANOVA study. It is evident that, thrust force (Fy) is the largest component followed by tangential force (Fz) and the feed force (Fx) in finish hard turning. The observations yield the machining ability of multilayer TiN coated carbide inserts in hard turning of AISI 4340 steel even at higher cutting speeds.  相似文献   

17.
Tool wear monitoring in drilling using force signals   总被引:3,自引:0,他引:3  
S. C. Lin  C. J. Ting 《Wear》1995,180(1-2):53-60
Utilization of force signals to achieve on-line drill wear monitoring is presented in this paper. A series of experiments were conducted to study the effects of tool wear as well as other cutting parameters on the cutting force signals and to establish the relationship between force signals and tool wear as well as other cutting parameters when drilling copper alloy. These experiments involve four independent variables; spindle rotational speed ranging from 600 to 2400 rev min−1, feed rate ranging from 60 to 200 mm min−1, drill diameter ranging from 5 to 10 mm, and average flank wear ranging from 0.1 to 0.9 mm. A statistical analysis provided good correlation between average thrust and drill flank wear. The relationship between cutting force signals and cutting parameters as well as tool wear is then established. The relationship can then be used for on-line drill flank wear monitoring. Feasibility studies show that the use of force signal for on-line drill flank wear monitoring is feasible.  相似文献   

18.
基于切削参数和刀具状态的车削功率模型   总被引:2,自引:0,他引:2  
动态切削功率建模是切削功率信号用于切削过程监控的关键。本文首次建立了基于切削参数 (主轴转速、进给量、切削深度 (即背吃刀量 )、工件材料及刀具材料 )与刀具状态 (主要考虑后刀面磨损量 )的车削功率模型。试验证明 ,该模型基本能正确反映车削功率信号与刀具状态及各种切削参数之间的关系  相似文献   

19.
In this study, performances of four different types of vegetable‐based cutting fluids (VBCFs) over a commercial mineral cutting fluid were evaluated for machinability of Al 7075‐T6. Lubrication properties of VBCFs were improved with additive of extreme pressure. Cutting force and tool wear data were obtained for performance analyses of cutting fluids during longitudinal turning of Al 7075‐T6. Cutting, feed and radial forces indicated 1.70–38.25% improvements for VBCFs over the commercial mineral cutting fluid. The lowest average values of flank and nose wears obtained with blended cutting fluid containing 12% of extreme pressure were 0.09 and 0.10 mm, respectively, whereas these values for the commercial mineral cutting fluid were 0.18 and 0.15 mm. The scanning electron microscope results showed adherence of workpiece material occurred on rake and flank faces, and flank and nose wears were the dominant wear modes. It was found that performances of VBCFs during turning of Al 7075‐T6 were better than that of the commercial mineral cutting fluid. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
张晓  靳伍银 《工具技术》2017,51(8):45-48
应用DEFORM 3D软件对钛合金高速车削进行仿真研究,分析了不同切削参数下切削力和切削温度的规律,研究发现背吃刀量和进给量对主切削力的影响较大,切削力与主切削力变化基本一致,切削速度对主切削力的影响不明显,但后者对切削温度具有显著影响;研究了工件和刀具温度场的变化规律以及工件所受应力和刀具的磨损情况,发现最高温度出现在切削刃邻近2mm区域内,且温度最高处刀具磨损程度最大,工件最大应力在第一变形区和工件接触区邻近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号