首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 187 毫秒
1.
微波辐射-水蒸气法制备烟杆基颗粒活性炭   总被引:11,自引:1,他引:10  
研究了以烟杆废弃物为原料,炭化过程中所产生的木焦油为主的复合粘结剂,采用微波辐射-水蒸气法制备颗粒活性炭的可行性。探讨了微波功率、活化时间以及水蒸气质量流量对颗粒活性炭吸附性能和得率的影响。得到了微波辐射-水蒸气法制备颗粒活性炭的最佳工艺:微波功率700 W,活化时间40 m in,水蒸气质量流量1.70 g/m in。此工艺条件制得的颗粒活性炭,碘吸附值1 060.81 mg/g,亚甲基蓝吸附值175 mL/g,得率30.83%。同时,测定了该颗粒活性炭氮吸附,通过BET法计算了活性炭的比表面积,并通过DFT表征了活性炭的孔结构。结果表明:该活性炭为微孔型,BET比表面积为1 109.22 m2/g,总孔容为0.613 1 mL/g。  相似文献   

2.
研究了以烟秆废弃物为原料,木焦油为主的复合黏结剂,采用微波辐射二氧化碳法制备颗粒活性炭的可行性.系统探索了微波功率,活化时间以及二氧化碳流量对颗粒活性炭吸附性能和产率的影响,得到了微波辐射二氧化碳法制备颗粒活性炭的最佳工艺条件:微波功率700W,活化时间70min,二氧化碳流量0.15L/min.用此工艺条件制得的颗粒活性炭,碘吸附值为960.30mg/g,亚甲基蓝吸附值13mL/0.1g,产率为43.37%.同时,测定了该颗粒活性炭氮气吸附,通过BET法计算了活性炭的比表面积,并通过DFT表征了活性炭的孔径结果.结果表明,该活性炭为微孔型,BET比表面积为986.65m^2/g,总孔容为0.5152mL/g.  相似文献   

3.
以亚麻屑为原料,采用微波辐射氯化锌法制备活性炭。研究了浸渍时间、氯化锌浓度、微波功率和辐射时间等因素对活性炭吸附性能和得率的影响。确定了用亚麻屑制备活性炭的最佳工艺条件:亚麻屑15g、浸渍时间24h、氯化锌浓度20%、微波功率600W、辐射时间12min。在该工艺条件下制备的活性炭其碘吸附值为1071.3mg/g、亚甲基蓝吸附值165mL/g、得率可达37.1%,均超过了国家标准一级产品的指标,且该工艺所需炭化活化时间为传统方法的1/30。  相似文献   

4.
以核桃壳为原料,采用微波辐照氯化锌法制备活性炭。探讨了活化条件对产品活性炭的亚甲基蓝脱色力、碘吸附值及得率的影响。最佳工艺条件为核桃壳原料10 g,微波功率580 W、活化时间7 min、氯化锌质量分数50%。在此条件下制得的活性炭的碘吸附值为977.81 mg/g,亚甲基蓝脱色力为160 mL/g,得率为51.06%。其活化时间是传统工艺的7/90,得率是传统工艺的1.5倍左右。  相似文献   

5.
提出了用微波辐射加热水蒸气活化法再生乙酸乙烯用废活性炭的新工艺.采用正交实验确定最佳工艺条件为:微波功率700 W、活化时间40 min、水蒸气流量2.1 g·min-1.在此条件下制得的活性炭碘吸附值为1193.85 mg·g-1、亚甲基蓝吸附值为19 mL·(0.1 g)-1、得率为65.36%.对活性炭的微孔分布和全孔分布进行了研究,活性炭比表面积为1547.47 m2·g-1、总孔容为0.8 mL·g-1.  相似文献   

6.
以核桃壳为原料,采用微波加热-水蒸汽活化法制备了活性炭。研究了微波功率、活化时间和水蒸汽流量等因素对吸附性能的影响。最佳工艺条件为:微波功率600 W、活化时间7 min、水蒸汽流量5 mL/min,活性炭产品的碘吸附值1076.57 mg/g,亚甲基蓝吸附值195 mg/g,得率25.11%。该工艺将常规加热方法的炭化和活化简化为一个过程,所需加热时间仅为传统方法的1/21,产品活性炭的亚甲基蓝吸附值为国家一级品标准的1.44倍。同时测定了该活性炭的氮吸附等温线,通过BET计算了活性炭的比表面积,并通过H—K方程和密度函数理论表征了活性炭的孔结构。结果表明,该活性炭为微孔型,BET 比表面积1 154.91 m~2/g,总孔体积0.564 9 mL/g,微孔占总孔体积(体积分数,下同) 79.86%,中孔体积分数19.97%,大孔占0.17%。  相似文献   

7.
微波辐射氢氧化钾法制备黄麻杆活性炭工艺   总被引:2,自引:0,他引:2  
研究了以黄麻杆为原料,微波辐射黄麻杆氢氧化钾法制备活性炭的工艺,讨论了碱炭比,活化时间,微波功率对活性炭吸附性能和得率的影响。研究表明,碱炭比为1,活化时间为14min,微波功率为700W时制得的活性炭碘吸附值为1264.02mg/g、亚甲基蓝吸附值为210mL/g,活化得率11.29%。  相似文献   

8.
探讨了活化温度、活化时间、水蒸气流量对再生后活性炭吸附性能和得率的影响,得到了最佳工艺条件:活化温度1 000℃,活化时间60 min,水蒸气流量2.23 g/min。该工艺条件下再生活性炭的碘吸附值1 174.37 mg/g,亚甲基蓝吸附值200 mL/g,得率为62.87%。再生后活性炭的吸附指标达到国家一级品的标准,其中亚甲基蓝吸附值是国家一级品标准的2.22倍。同时,测定了该活性炭氮吸附,通过BET计算了活性炭的比表面积,通过密度函数理论(DFT)表征了活性炭的孔结构。结果表明:该活性炭为微孔型,BET比表面积为1 254.51 m2/g,总孔容为0.592 6 mL/g。  相似文献   

9.
水蒸气活化法制备稻壳活性炭的研究   总被引:1,自引:0,他引:1  
研究了水蒸气活化法制备稻壳活性炭的工艺条件,探讨了炭化温度、活化温度、活化时间和水蒸气用量对活化效果的影响。最佳工艺条件为:炭化温度 450℃、活化温度 900℃、活化时间 90 min和水蒸气用量为炭化料的1.5倍,制备的活性炭碘吸附值 844 mg/g,亚甲基蓝吸附值 138 mL/g,产品得率 13.9%。这些指标与木质活性炭相当。且投资少,能耗低,具有良好的经济效益与社会效益。  相似文献   

10.
微波加热化学活化法制备活性炭的优化工艺研究   总被引:2,自引:2,他引:0  
研究了微波加热条件下碳酸钾活化制备活性炭的工艺流程。以碳酸钾为活化剂,微波为热源,采用正交试验,研究了浸渍时间、活化剂浓度、微波功率、微波加热时间对活性炭产品性能碘吸附值、亚甲基蓝吸附值、得率的影响规律,得到了最佳工艺条件,即微波功率600 W、微波加热时间6 min、碳酸钾浓度0.20 g/mL、浸渍时间24 h。制得活性炭的碘吸附值可达1189.68 mg/g、亚甲基蓝吸附值190 mL/g、得率29.48%,在该工艺条件下,制备的活性炭试样比表面积为1186.10 m2/g,总孔容积0.624 cm3/g,微孔容积0.407 cm3/g,吸附性能较国家标准有所提高。  相似文献   

11.
Taking soybean straw rich in nitrogen-containing functional groups as the raw material precursor, combined with the special advantages of microwave heating, microwave heating technology is applied to the pyrolysis and activation process of soybean straw. The pyrolysis solid product is used as the activation raw material, and CO2 is used as the activator to study the preparation of activated carbon, in order to prepare the biomass activated carbon with high desulfurization performance. First, the optimal activation level was obtained by orthogonal experimental design and range analysis. Then, the effects of microwave power, CO2 flow rate and activation time on the yield, pore structure and desulfurization performance of activated carbon were investigated by single factor experiment. The optimal activation conditions were selected by comparative analysis: microwave power 900 W, CO2 flow rate 0.10 L/min, activation time 20 min. Under these conditions, the yield of activated carbon is 76.3%(mass), the SO2 adsorbance quantity is 112.56 mg/g, specific surface area is 466.28 m2/g. Compared with pyrolytic carbon, activated carbon has larger specific surface area and more abundant pores and significantly improved desulfurization performance.  相似文献   

12.
以富含含氮官能团的大豆秸秆为原料前体,结合微波加热的特殊优势,将微波加热技术应用于大豆秸秆热解和活化工艺。以热解固体产物为活化原料,以CO2为活化剂进行活性炭制备研究,以期制备出高脱硫性能的生物质活性炭。首先通过正交实验设计及极差分析得出最优活化水平,再通过单因素实验法考察微波功率、CO2流量和活化时间对活性炭产率、孔隙结构以及脱硫性能的影响。对比分析选出最佳活化条件为微波功率900 W,CO2流量0.10 L/min,活化时间20 min。在此条件下活性炭产率为76.3%(质量),SO2饱和吸附容量为112.56 mg/g,比表面积为466.28 m2/g。相比热解炭,活性炭的比表面积更大,孔隙更加丰富,脱硫性能显著提高。  相似文献   

13.
微波辐射龙眼壳制备活性炭的正交试验研究   总被引:2,自引:0,他引:2  
以龙眼壳为原料,氯化锌为活化剂,微波制备活性炭,采用正交试验研究了浸渍时间、微波功率、微波辐射时间、活化剂浓度等对活性炭产率和吸附性能的影响。得到了较优制备条件;浸渍时间48h,微波功率720w,辐射时间13min,氯化锌质量分数25%。活性炭的亚甲基蓝吸附值为93mL/g,碘的吸附值为1011.40mg/g,优于国家一级品指标。该方法操作方便,热效率高,大大缩短了活性炭的制备时间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号