首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aimed at determining the influence of ammonia volatilization on nitrogen removal in polishing (maturation) ponds treating sanitary effluent from upflow anaerobic sludge blanket (UASB) reactors in the city of Belo Horizonte, Brazil. An apparatus for the capture and absorption of volatilized ammonia in three polishing ponds in series was installed. Volatilized ammonia was captured by a chamber on the surface of the ponds and dissolved in boric acid solution, in order to estimate the amount of ammonia per unit surface area of each pond. Low rates of volatilization, below 0.2 kg/ha.d, in about 75% of samples from all the ponds, were observed. The mass balance of ammonia nitrogen of the ponds showed that the volatilization represented only about 2% of the total removal of nitrogen from the polishing ponds. The results obtained suggest that ammonia volatilization was a mechanism of little importance in nitrogen removal in the investigated polishing ponds.  相似文献   

2.
The production of small amounts of well-stabilized biological sludge is one of the main advantages of upflow anaerobic sludge bed (UASB) reactors over aerobic wastewater treatment systems. In this work, sludge produced in three pilot-scale UASB reactors used to treat sewage under subtropical conditions was assessed for both stability and specific methanogenic activity. Stability of primary sludge from settling tanks and digested sludge from conventional sludge digesters was also measured for comparison purposes. Kinetic parameters like the hydrolysis rate constant and the decay rate constant were calculated. High stability was observed in sludge from UASB reactors. Methanogenic activity in anaerobic sludges was relatively low, probably due to the low organic matter concentration in influent sewage. Knowledge on sludge growth rate, stability, and activity might be very useful to optimize sludge management activities in full-scale UASB reactors.  相似文献   

3.
This paper presents results on the quantification and chromatographic characterization of soluble microbial products (SMP) accumulated in two laboratory-scale reactors: a submerged anaerobic membrane reactor (SAMBR or MBR), and an anaerobic CSTR. The results obtained under steady-state conditions show that 2.1% of the substrate was channelled into the production of SMP in the CSTR, whilst in the SAMBR this was estimated to be 25%. Chromatographic characterization showed that more hydrophobic and high MW organics that absorb at 254 nm were detected in the SAMBR supernatant than in the CSTR. A comparison of chromatograms suggest that the release of extracellular polymers (ECP) and cell lysis may be important sources of SMP in the SAMBR. Electrophoresis results confirmed that there was more soluble protein inside the SAMBR, and showed that the release of ECP by shear or hydrolysis seemed to have contributed to the production of protein-like SMP in both systems.  相似文献   

4.
The release of CH(4) and H(2)S in UASB reactors was evaluated with the aim to quantify the emissions from the liquid surfaces (three-phase separator and settler compartment) and also from the reactor's discharge hydraulic structures. The studies were carried out in two pilot- (360 L) and one demo-scale (14 m(3)) UASB reactors treating domestic wastewater. As expected, the release rates were much higher across the gas/liquid interfaces of the three-phase separators (5.4-9.7 kg CH(4) m(-2) d(-1) and 23.0-35.8 g S m(-2) d(-1)) as compared with the quiescent settler surfaces (11.0-17.8 g CH(4) m(-2) d(-1) and 0.21 to 0.37 g S m(-2) d(-1)). The decrease of dissolved methane and dissolved hydrogen sulfide was very large in the discharging hydraulic structures very close to the reactor (>60 and >80%, respectively), largely due to the loss to the atmosphere, indicating that the concentration of these compounds will probably fall to values close to zero in the near downstream structures. The emission factors due to the release of dissolved methane in the discharge structure amounted to around 0.040 g CH(4) g COD(infl)(-1) and 0.060 g CH(4) g COD(rem)(-1), representing around 60% of the methane collected in the three-phase separator.  相似文献   

5.
This paper aimed at measuring the concentration of methane dissolved in effluents from different UASB reactors (pilot-, demo- and full-scale) treating domestic wastewater, in order to calculate the degree of saturation of such greenhouse gas and evaluate the losses of energetic potential in such systems. The results showed that methane saturation degrees, calculated according to Henry's law, varied from ~1.4 to 1.7 in the different reactors, indicating that methane was oversaturated in the liquid phase. The overall results indicated that the losses of dissolved methane in the anaerobic effluents were considerably high, varying from 36 to 41% of total methane generated in the reactor. These results show that there is considerable uncontrolled loss of methane in anaerobic wastewater treatment plants, implying the need of research on technologies aimed at recovering such energetic greenhouse gas.  相似文献   

6.
There are few studies in the literature that have aimed at characterizing the physical, chemical, and microbial aspects of scum produced in UASB reactors. In addition, there is little information on the influence of operational conditions of UASB reactors on scum formation, and the present work addresses these issues. Three demo-scale UASB reactors, fed on domestic wastewater, were employed to monitor the formation and its characteristics. Scum production was periodically assessed during different operational phases, and its characterization involved analyses of BOD, COD, solids, sulfide, sulfate, microscopic observations, as well as biodegradability tests. The results show that the scum formed was physically, chemically, and microscopically similar in both geminated reactors, being comprised mainly of organic material of low biodegradability. Several bacterial morphotypes, mainly filaments and rods, with internal sulfur granules, were observed, and the aerobic microorganisms that developed at the scum layer as a result of photosynthetic activity of cyanobacteria, seemed to play an important role in sulfide removal and odour control. Scum production rates were similar in both reactors, but the imposed higher upflow velocities resulted in a higher production rate and in a reduced biodegradability of the scum.  相似文献   

7.
The main purpose of this study was to evaluate the performance of the electrochemical oxidation process as a post-treatment for the effluents of a bench-scale UASB reactor treating simulated wastewater from an unbleached pulp plant. The oxidation process was performed using a single compartment cell with two plates as electrodes. The anode was made of Ti/Ru0.3Ti0.7O2 and the cathode of stainless steel. The following variables were evaluated: current density (75, 150 and 225 mA cm(-2)) and recirculation flow rate in the electrochemical cell (0.22, 0.45 and 0.90 L h(-1)). The increase in current density from 75 to 225 mA cm(-2) did not increased the color removal efficiency for the tested flow rates, 0.22, 0.45 and 0.90 L h(-1), however the energy consumption increased significantly. The results indicated the technical feasibility of the electrochemical treatment as post-treatment for UASB reactors treating wastewaters from pulp and paper plants.  相似文献   

8.
This paper presents results from exploratory experiments to test the technical feasibility of electrolytic treatment and coagulation followed by flocculation and sedimentation as post-treatment for the effluent of an UASB reactor treating simulated wastewater from an unbleached Kraft pulp mill. The electrolytic treatment provided up to 67% removal of the remaining COD and 98% of color removal. To achieve these efficiencies the energy consumption ranged from 14 Wh x l(-1) to 20 Wh x l(-1). The coagulation-flocculation treatment followed by settling required 350-400 mg x l(-1) of aluminium sulfate. The addition of a high molecular weight cationic polymer enhanced both COD and color removal. Both post-treatment processes are technically feasible.  相似文献   

9.
This study aimed at the identification of microorganisms present in the scum layer of the settler compartment of upflow anaerobic sludge blanket (UASB) reactors, and to evaluate their role in the biological oxidation of sulphides. The experiments were conducted using scum samples taken from two pilot-scale UASB reactors, both treating domestic wastewater. Microorganisms similar to Beggiatoa sp., Thiotrix sp. and species of cyanobacteria were identified based on their morphology, and most of them have been shown to be capable of carrying out sulphur oxidation. Tests of biological oxidation of sulphides using scum and cultures of the cyanobacteria Phormidium and Pseudoanabaena showed a significant decrease in the concentrations of the sulphides, suggesting that the microorganisms present in the scum layer can play a role in the minimization of odour emissions.  相似文献   

10.
UASB reactors followed by polishing ponds comprise simple and economic wastewater treatment systems, capable of reaching very high removal efficiencies of pathogenic organisms, leading to the potential use of the effluent for unrestricted irrigation. However, for other types of reuse (urban and industrial), ponds are limited in the sense of producing effluents with high suspended solids (algae) concentrations. The work investigates a system with coarse rock filters for polishing the pond effluent. The overall performance of the system is analyzed, together with the potential for different types of reuse. The excellent results obtained (mean effluent concentrations: BOD: 27 mg/L; SS: 26 mg/L; E. coli: 450 MPN/100 mL) indicate the possibility of unrestricted use of the effluent for agriculture and restricted urban and industrial uses, according to WHO and USEPA.  相似文献   

11.
This study aimed at evaluating the performance of five laboratory-scale reactors, three UASB and two downflow anaerobic expanded bed (DAEB), fed with saccharose and long chain fatty acids (LCFA) for 410 days. Reactors operated at a temperature of 35 degrees C. The organic load rates were changed between 3.45 and 6.38 kg COD.m3.d(-1). During period I the substrate was saccharose and in periods II, III and IV it was saccharose plus sodium oleate, stereate and a mixture of sodium oleate and stereate. The UASB and DAEB reactors showed a similar performance. In UASB reactors specific methanogenic activity decreased in the periods II, III and IV. COD removal, biogas production and CH4 concentration in biogas decreased in all reactors at the end of the study. A washout occurred in UASB 2 and 3 when sodium stereate exceeded 500 mg.L(-1). In DAEB reactors the main problem was adsorption of LCFA particles onto the solid support.  相似文献   

12.
The operation of two different reactor configurations (UASB and EGSB), while treating medium and low concentrated wastewater (MCW and LCW, respectively), was studied. The MCW (5 g COD/l) was initially supplied for reactor start up and granule maturation, being subsequently changed to the LCW (0.5 g COD/I), with which led the reactors to an unstable state associated with the deterioration of granule characteristics, in terms of extracellular polymeric substances (EPS) content and composition. The addition of pectin as an exogenous EPS was considered as a way to directly act on granule characteristics and its effect was studied by monitoring the operational parameters as well as by following the EPS content and composition within granules and the dynamics of microbial populations. The effect of adding pectin led to a significant recuperation of the operational performance in both reactors, associated with the increase in Archaea relative abundance, this likely related to the major presence of Methanosaeta-like microorganisms in granules with higher activity and stability.  相似文献   

13.
During treatment of winery and distillery wastewater by natural evaporation in ponds, formation of malodorous compounds induces harmful olfactory effects. In this work, we studied the origin of malodorous compounds and methods to prevent and treat odours. The formation of volatile fatty acids (VFA) from pure substrates (glycerol, lactic and tartaric acids, ethanol) and complex media (winery and distillery wastewater) was studied. Various anaerobic bacteria ferment the glycerol and produce butyric or propionic acid. Valeric and caproic acids were observed at lower concentrations than butyric and propionic acids, but their malodorous intensities were higher. Microflora produce butyric, valeric, caproic, heptanoic and octanoic acids from ethanol, the main component of winery wastewater. When nitrate (an electron acceptor) is added, catabolism leads to an anaerobic respiration phenomenon (denitrification). The organic compounds are oxidised to CO2 and the nitrate is reduced to N2 (odourless compounds), without VFA formation. The preventive treatment of odours by nitrate addition was tested on an industrial scale in winery and distillery ponds. Furthermore, the study took the effect of nitrate on VFA degradation into consideration. The results make it possible to consider using nitrate for the curative treatment of pond odours.  相似文献   

14.
Reetha (Sapindus trifoliata) seed extract and Chitosan were used as additives in the sludge bed of a UASB reactor treating low strength wastewater to enhance granulation. Five parallel laboratory scale UASB reactors were operated for 250 days with synthetic wastewater feed containing COD in the range of 600-800 mg/L. The reactors were seeded with spent sludge from a full-scale 5MLD UASB treatment plant at Jajmau, Kanpur, India. The seed sludge contained little or no granules. Different additives in the five reactors were as follows: control with no additive, cationic part of Reetha extract as additive, anionic part of Reetha extract as additive, bulk Reetha extract as additive and Chitosan as additive. The granulation rapidly increased in all the reactors beyond the 90th day of operation. The mean granule sizes as well as the fraction of granular sludge (particle size > or = 100 microm) were more in the presence of some of the additives compared to the control reactor. Chitosan significantly enhanced granulation followed by the cationic and anionic fractions of the Reetha extract. The bulk Reetha extract did not show enhancement of granulation. The ESEM/EDAX results showed that the bigger granules (3-4 mm) had porous structure and appeared as conglomerates of smaller granules.  相似文献   

15.
In this investigation, the performance of Upflow Anaerobic Sludge Blanket (UASB) reactors treating municipal wastewater was evaluated on the basis of: (i) COD removal efficiency, (ii) effluent variability, and (iii) pH stability. The experiments were performed using 8 pilot-scale UASB reactors (120 L) from which some of them were operated with different influent COD (CODInf ranging from 92 to 816 mg/L) and some at different hydraulic retention time (HRT ranging from 1 to 6 h). The results show that decreasing the CODInf, or lowering the HRT, leads to decreased efficiencies and increased effluent variability. During this experiment, the reactors could treat efficiently sewage with concentration as low as 200 mg COD/L. They could also be operated satisfactorily at an HRT as low as 2 hours, without problems of operational stability. The maximum COD removal efficiency can be achieved at CODInf exceeding 300 mg/L and HRT of 6h.  相似文献   

16.
Wastewater from seafood industry contains high concentrations of organic matter, nitrogen compounds, and solid matter. Constructed wetland can be used as tertiary treatment and for nutrient recycling. This research studied the performance of nitrogen and suspended solids removal efficiency of a constructed wetland treating wastewater from a seafood-processing factory located at Songkhla, southern Thailand. The existing constructed wetland has dimensions of 85 m, 352 m and 1.5 m in width, length and depth respectively, with an area of about 29,920 m2. The water depth of 0.30 m is maintained in operation with plantation of cattails (Typha augustifolia). Flow rate of influent ranged between 500-4,660 m3/d. Average hydraulic retention time in the constructed wetland was about 4.8 days. Influent and effluent from the constructed wetland were collected once a week and analyzed for pH, temperature, dissolved oxygen (DO), biochemical oxygen demand (BOD5), Suspended solid (SS), total Kjeldahl nitrogen (TKN), ammonia nitrogen (NH3-N), organic nitrogen (Org-N), nitrate (NO3-N), and nitrite (NO2-N). The average removal efficiencies of BOD5, SS, TKN, NH3-N, and Org-N were 84%, 94%, 49%, 52% and 82%, respectively. It was found that the constructed wetland acting as a tertiary treatment process provided additional removal of BOD5, SS and TKN from wastewater from the seafood industry.  相似文献   

17.
An Imhoff tank was reconstructed into a 250 m3 UASB reactor in order to treat a malting plant wastewater. The UASB was inoculated with sludge from an anaerobic lagoon used for slaughterhouse wastewater treatment. After two months of operation the reactor achieved full load with an HRT of 17 h, a COD removal higher than 80% and a biogas production of 300 m3/day (77% average methane content), with an organic loading rate of 3.6 kgCOD/m3.d (0.24 kgCOD/kgVSS.d). A yield coefficient of 0.09 gVSS/gCODrem was found from a mass balance. The fat present in the inoculated sludge (48 mg/gSSV) did not affect the start up performance. Sludge from the inoculum with high content of fat (270 mg/gSSV), was separated by flotation in the first week of operation. The COD removal efficiency was scarcely influenced by the reactor operation temperature (17-25 degrees C).  相似文献   

18.
New Zealand has over 1000 anaerobic wastewater stabilisation ponds used for the treatment of wastewater from farms and industry. Traditional anaerobic ponds were not designed to optimise anaerobic digestion of wastewater biomass to produce biogas and these uncovered ponds allowed biogas to escape to the atmosphere. This release of biogas not only causes odour problems, but contributes to GHG (greenhouse gas) emissions and is wasteful of energy that could be captured and used. Biogas production from anaerobic stabilisation ponds treating piggery and dairy wastewater was measured using floating 25 m2 HDPE covers on the pond surface. Biogas composition was analysed monthly and gas production was continually monitored. Mean areal biogas (methane) production rates from piggery and dairy anaerobic ponds were 0.78 (0.53) m3/m2/d and 0.03 (0.023) m3/m2/d respectively. Average CH4 content of the piggery and dairy farm biogas were 72.0% and 80.3% respectively. Conversion of the average volume of methane gas that could be captured from the piggery and dairy farm ponds (393.4 m3/d and 40.7 m3/d) to electricity would reduce CO2 equivalent GHG emissions by 5.6 tonnes/d and 0.6 tonnes/d and generate 1,180 kWh/d and 122 kWh/d. These results suggest that anaerobic ponds in New Zealand release considerable amounts of GHG and that there is great potential for energy recovery.  相似文献   

19.
Sludge management arises as a relevant problem after being accumulated in primary ponds of septage treatment plants. One of the most attractive options for sludge disposal is its use in agriculture and then specific guidelines regarding hygienic quality must be fulfilled. This study aimed at evaluating the storage time needed to inactivate Ascaris eggs and Salmonella in sludge accumulated in a primary pond treating septage. Raw septage exhibited very low concentrations of viable Ascaris eggs, thus experiments with Ascaris suum eggs spiking were conducted. The concentration of Ascaris eggs in the solids accumulated at the bottom of the pond was 20 eggs/g of total solids (g TS) at the time of pond closure. Although it decreased, some eggs remained viable (0.59 mean viable eggs/g TS) up to 20 months of in-pond storage of the biosolids. Salmonella survival was studied after developing an analytical method that inhibited the native flora. Sludge was seeded with Salmonella enteritidis. An equation adequately describing Salmonella die-off in biosolids subjected to 115 days of in-pond storage/dewatering, was found to be represented by the regression: y = log MPN Salmonella/g TS = 6.67 x t(-0.086), with t = storage time elapsed in days. The initial concentration was 7.0 x 10(6) MPN/g TS and the removal efficiency was 99%.  相似文献   

20.
The main current trends in final disposal of sludge from Wastewater Treatment Plants (WTP) include: safe use of nutrients and organic matter in agriculture, sludge disinfection and restricted use in landfill. As to sludge hygienization, helminth eggs have been used as a major parameter to determine the effectiveness of such process, and its inactivation can be reached by means of thermal treatment, under varying temperature and other conditions. In such context, the objective of this research was to determine how effectively biogas produced in UASB reactors could be used as a source of calorific energy for the thermal hygienization of excess anaerobic sludge, with Ascaris lumbricoides eggs being used as indicator microorganisms, and whether the system can operate on a self-sustained basis. The experiments were conducted in a pilot-scale plant comprising one UASB reactor, two biogas holders and one thermal reactor. The investigation proved to be of extreme importance to developing countries, since it leads to a simplified and fully self-sustainable solution for sludge hygienization, while making it possible to reuse such material for agricultural purposes. It should be also noted that using biogas from UASB reactors is more than sufficient to accomplish the thermal hygienization of all excess sludge produced by this system, when used for treating domestic sewage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号