首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Glucocorticoids (GCs) suppress the hypothalamus-pituitary-adrenal (HPA) axis at various sites including hypothalamus, pituitary and extrahypothalamic brain. Previous studies have shown that corticotropin-releasing hormone (CRH) and vasopressin facilitate the recovery of HPA axis suppressed by GCs. In this study, we investigate whether the concomitant continuous infusion of CRH may prevent the suppression of HPA axis by GCs. Groups of male Wistar rats weighing 140 to 160 g were implanted subcutaneously with Alzet osmotic pump for delivery of dexamethasone (DEX), 2 micrograms/h and/or CRH, 0.66 microgram/h. Control rats were implanted with sialistic tube of similar size. Rats were decapitated 3 or 7 days after osmotic pump implantation. In spite of the suppression of plasma corticosterone, the body weight (BW), adrenal weight (AW), plasma corticotropin (ACTH) and pituitary ACTH content of rats treated with DEX for 3 days were not significantly different from those of control rats. Concomitant infusion of ovine CRH (oCRH) and DEX for 3 days caused impaired BW gain, adrenal atrophy in addition to further reduction of plasma corticosterone. Treatment with DEX and/or oCRH for 7 days caused further suppression of HPA axis as shown by reduced pituitary ACTH content. In conclusion, simultaneous infusion of oCRH and DEX does not prevent and may even worsen HPA axis suppression by DEX.  相似文献   

2.
Uncontrolled diabetes mellitus causes both a sustained activation of the hypothalamic-pituitary-adrenal (HPA) axis and reduced expression of corticotrophin-releasing hormone (CRH) mRNA in the hypothalamic paraventricular nucleus (PVN). To investigate the role of glucocorticoids in the regulation of CRH mRNA expression in the PVN of diabetic rats, we studied surgically adrenalectomized (ADX) and sham-operated male Sprague-Dawley rats 4 days after i.v. injection of streptozotocin (STZ; 65 mg/kg i.v.) or vehicle. Among sham-operated animals, AM plasma corticosterone levels were significantly increased in diabetic as compared to nondiabetic animals (1.46+/-0.54 vs. 0.22+/-0.05 microg/dl; P <0.05), and were positively correlated to both plasma ACTH levels (r = 0.74; P = 0.015) and adrenal gland weight (r = 0.70; P = 0.025). In contrast, CRH mRNA levels measured in the PVN by in situ hybridization were inversely related to the plasma corticosterone level (r = -0.68; P = 0.045). In a second experiment, both diabetic and nondiabetic ADX rats received a continuous subcutaneous infusion of either corticosterone at one of two doses or its vehicle for 4 days. Among vehicle-treated ADX animals, STZ diabetes raised hypothalamic CRH mRNA levels, in contrast to the tendency for diabetes to lower CRH mRNA in intact rats in the first experiment. Corticosterone administration lowered CRH mRNA comparably in both diabetic and nondiabetic ADX rats. In contrast, diabetes reduced arginine vasopressin (AVP) mRNA levels in the PVN of ADX rats and blunted the inhibitory effect of glucocorticoids on AVP mRNA levels in this setting. We conclude (1) glucocorticoids are necessary for the effect of diabetes to reduce hypothalamic CRH gene expression, since diabetes causes a paradoxical increase in CRH mRNA levels in adrenalectomized animals; (2) glucocorticoid inhibition of hypothalamic CRH gene expression is intact in diabetic rats; and (3) the activation of the HPA axis by diabetes is associated with a proportionate decrease in PVN CRH gene expression. These findings support a model in which hypothalamic factors additional to CRH activate the HPA axis in uncontrolled diabetes, and inhibit CRH gene expression indirectly by negative glucocorticoid feedback.  相似文献   

3.
OBJECTIVE: The present study was conducted in order to describe human hypothalamo-pituitary adrenal (HPA) axis adaptation in a model of repeated physical stress (endurance training) that causes a moderate increase in cortisol levels. SUBJECTS: We performed the same stimulation tests (adrenal stimulation with ACTH or pituitary stimulation with combined CRH/LVP) in a population of 8 endurance-trained athletes in two distinct situations: resting (baseline cortisol values) and 2 h after the end of strenuous exercise (increased cortisol values) to evaluate the HPA axis sensitivity to endogenous sustained increases in cortisol concentrations. MEASUREMENTS: During these tests, saliva and plasma cortisol (Fs and Fp, respectively) were assessed and compared. RESULT: Cortisol values in both plasma and saliva at the end of 2 h of exercise were significantly higher than in rested controls: Fs 11.5 +/- 1.3 vs 6.5 +/- 0.8 nmol.l-1 and Fp 428 +/- 36 vs 279 +/- 27 nmol.l-1 (post exercise vs post rest sessions, respectively, P < 0.001 for both). After either hormone test (CRH/LVP or ACTH), cortisol levels in plasma and saliva increased similarly when rest was compared to post exercise. Saliva variations (delta %) under exogenous hormone stimulation were dramatically greater than plasma variations. For example, under ACTH stimulation, the relative increments in cortisol were on control day: delta Fs 980 +/- 139 vs delta Fp 218 +/- 43% (saliva vs plasma, respectively, P < 0.05) and on exercise day: delta Fs 605 +/- 89 vs delta Fp 102 +/- 14% (saliva vs plasma, respectively, P < 0.05). CONCLUSIONS: In endurance-trained athletes, displaying a moderate but sustained endogenous cortisol increase: (1) ACTH responses following pituitary stimulation are not blunted, (2) cortisol responses following maximal adrenal stimulation are not blunted. Our results favour the hypothesis of a decreased pituitary sensitivity to cortisol negative feedback whereas the hypothesis of a major decreased adrenal sensitivity to ACTH was discarded. The greater ability of saliva assays to detect a cortisol increase strongly supports its use in the study of HPA physiology, whether under basal or dynamic conditions.  相似文献   

4.
Corticotropin-releasing hormone (CRH) is the primary hypothalamic releasing factor that mediates the mammalian stress response. The CRH-binding protein (CRH-BP) is secreted from corticotropes, the pituitary CRH target cells, suggesting that the CRH-BP may modulate hypothalamic-pituitary-adrenal (HPA) axis activity by preventing CRH receptor stimulation. Transgenic mice were generated that constitutively express elevated levels of CRH-BP in the anterior pituitary gland. RNA and protein analyses confirmed the elevation of pituitary CRH-BP. Basal plasma concentrations of corticosterone and adrenocorticotropin hormone (ACTH) are unchanged, and a normal pattern of increased corticosterone and ACTH was observed after restraint stress. However, CRH and vasopressin (AVP) mRNA levels in the transgenic mice are increased by 82 and 35%, respectively, to compensate for the excess CRH-BP, consistent with the idea that CRH-BP levels are important for homeostasis. The transgenic mice exhibit increased activity in standard behavioral tests, and an altered circadian pattern of food intake which may be due to transgene expression in the brain. Alterations in CRH and AVP in response to elevated pituitary CRH-BP clearly demonstrate that regulation of CRH-BP is important in the function of the HPA axis.  相似文献   

5.
The dynamic patterns of basal and stimulated hypothalamo-pituitary-adrenal (HPA) activity of freely moving female Lewis and Fischer 344 rats were compared using an automated blood-sampling system. Both strains showed pulsatile corticosterone release throughout the 24 h cycle. Lewis rats showed clear circadian variation in both pulse frequency (8.4 +/- 0.4 pulses between 1700-2300 h vs. 5.3 +/- 0.8 pulses between 0500-1100 h; P < 0.05) and height (198 +/- 27 ng/ml between 1700-2300 h vs. 107 +/- 14 ng/ml between 0500-1100 h; P < 0.05). Fischer rats exhibited pulses of similar frequency and height to those in Lewis rats during the evening, but showed no circadian variation, resulting in higher mean daily corticosterone concentrations. Although both strains showed behavioral and HPA responses to white noise stress (10 min; 114 dB), Fischer rats showed much greater increases in total activity, grooming, and rearings, and two important differences in the corticosterone responses were observed. First, in Lewis rats a clear relationship existed between basal and stimulated HPA activities, in that a significant response was seen only when the stress coincided with the rising (secretory active) phase of a basal pulse. Noise stress coinciding with a falling (nonsecretory) phase elicited no significant response. In contrast, Fischer rats showed similar responses regardless of the underlying pulse phase. Second, after the peak response at 20 min (Lewis, 237 +/- 67 ng/ml; Fischer, 390 +/- 57 ng/ml), corticosterone levels fell rapidly in Lewis rats, but remained maximally elevated for 20 min in Fischer rats, resulting in a significantly greater integrated response. The corticosterone response to i.v. CRF was unaffected by pulse phase in both strains, suggesting that a suprapituitary mechanism mediates the phase-dependent response to stress in the Lewis strain. CRF-induced corticosterone levels rose more rapidly in Fischer rats, peaking at 10 min (473 +/- 95 ng/ml) compared with 30 min (390 +/- 75 ng/ml) in Lewis rats, suggesting greater pituitary sensitivity in this strain. Thus, differences in both central and pituitary control of the HPA axis contribute to the strain difference in stress responsiveness between female Lewis and Fischer rats.  相似文献   

6.
The effect of social crowding stress on the CRH-induced hypothalamic-pituitary-adrenocortical (HPA) responsiveness was assessed in rats crowded for 3 days, when the HPA response to neurotransmitter receptors stimulation was powerfully reduced. CRH given systemically dose-dependently increased the secretion of corticosterone. The increase was not affected by pretreatment with prazosin or propranolol, an alpha 1- or beta-adrenergic receptor antagonist, indicating the lack of involvement of adrenergic receptors in that stimulation. In the corticosterone response to CRH administered icv, a moderate involvement of hypothalamic alpha 1-adrenergic receptors and neuronal noradrenaline seems possible. The corticosterone responses to CRH given by either route to rats exposed to social crowding stress were identical with the responses of unstressed controls. Our results for the first have time shown that social crowding stress does not impair the HPA responsiveness to CRH stimulation.  相似文献   

7.
A transgene expressing antisense RNA complementary to a fragment of the glucocorticoid receptor cDNA was incorporated into the mouse genome and resulted in a transgenic animal that has decreased glucocorticoid receptor function. The transgenic mice showed basal plasma ACTH and corticosterone levels similar to those of the normal control animals. We have further investigated changes in HPA axis regulation by use of different neuroendocrine challenge tests including a dexamethasone suppression test (DST). In comparison to normal mice, a tenfold higher dose of dexamethasone (i.e. 20 micrograms/100 g body weight) was required to suppress the basal corticosterone levels of transgenic mice. Dexamethasone (2 micrograms/100 g body weight) produced a long-lasting suppression of plasma ACTH and corticosterone levels in control mice, whereas in transgenic animals only a short-lasting decrease in ACTH levels was apparent. Corticotropin-releasing hormone (CRH) administration resulted in an enhanced response in plasma ACTH levels in transgenic mice, whereas the corticosterone response was markedly reduced. The discrepancy between ACTH and corresponding corticosterone secretions in transgenic mice could be attributed, in part, to a reduced sensitivity of the adrenal gland to stimulation by ACTH. Pituitaries of transgenic mice contained about 50% less proopiomelanocortin (POMC) mRNA than those of control animals. No significant differences were noted in the ACTH or protein contents of normal and transgenic mice pituitary glands although a slight increase in protein content of the transgenic mouse adrenal gland was apparent. In conclusion, transgenic mice with impaired GR function show major disturbances in HPA axis regulation which seem to be caused by the primary defect in conjunction with secondary modifications in, amongst others, pituitary CRH receptor system(s), sympathetic output and adrenal development. This mouse is therefore a useful model to study the consequences of life-long defective GR function and HPA axis regulation in general.  相似文献   

8.
To evaluate the effects of a standard inflammatory challenge on the dynamics of the hypothalamic-pituitary-adrenal (HPA) axis, we studied the effects of low-dose endotoxin (1.0 microgram/kg) on plasma adrenocorticotropic hormone (ACTH) and cortisol concentrations in a saline-controlled study in five awake dogs. Four hours after endotoxin or saline challenge human corticotrophin-releasing hormone (hCRH; 1.0 microgram/kg) was administered. Plasma ACTH and cortisol levels increased considerably in response to endotoxin, from 13 +/- 1 ng/l to 360 +/- 85 ng/l (p < 0.01) and from 60 +/- 20 nmol/l to 710 +/- 80 nmol/l (p < 0.01). Despite a considerable difference in ACTH and cortisol levels prior to CRH administration between both studies (p < 0.01), the absolute increase in ACTH levels induced by hCRH was not different (231 +/ 43 ng/l vs 238 +/- 45 ng/l, control vs endotoxin). Plasma cortisol levels increased significantly in the control study (from 40 +/- 10 nmol/l to 330 +/- 40 nmol/l, p < 0.01), whereas they did not change in the endotoxin study after hCRH administration (from 710 +/- 80 nmol/l to 730 +/- 70 nmol/l, ns). We conclude that the HPA-axis reacts initially to endotoxin in such a way that cortisol, but not ACTH, secretion is maximized. Therefore, a blunted cortisol response to CRH testing is part of the initial response to infection.  相似文献   

9.
CRH, the principal regulator of the hypothalamic-pituitary-adrenal axis and modulator of autonomic nervous system activity, also participates in the regulation of appetite and energy expenditure. Antalarmin, a pyrrolopyrimidine compound, antagonizes CRH type 1 receptor-mediated effects of CRH, including pituitary ACTH release, stress behaviors, and acute inflammation. We administered antalarmin chronically to evaluate its effects on hypothalamic-pituitary-adrenal axis function and metabolic status. Adult male rats were treated twice daily with 20 mg/kg of i.p. antalarmin or placebo over 11 days. The animals were weighed; plasma ACTH, corticosterone, leptin, and blood glucose levels were determined; and morphometric analyses were performed to determine adrenal size and structure, including sizing, histochemistry, immunohistochemistry, and electron microscopy. Leptin messenger RNA expression in peripheral fat was analyzed by Northern blot. Antalarmin decreased plasma ACTH (mean +/- SD, 2.62 +/- 0.063 pg/ml) and corticosterone concentrations (10.21 +/- 1.80 microg/dl) compared with those in vehicle-treated rats [respectively, 5.3 +/- 2.0 (P < 0.05) and 57.02 +/- 8.86 (P < 0.01)]. Antalarmin had no significant effect on body weight, plasma leptin, or blood glucose concentrations or fat cell leptin messenger RNA levels. The width of the adrenal cortex of animals treated with antalarmin was reduced by 31% compared with that in controls without atrophy of the gland. On the ultrastructural level, adrenocortical cells were in a hypofunctional state characterized by reduced vascularization, increased content of lipid droplets, and tubulovesicular mitochondria with fewer inner membranes. The apoptotic rate was increased in the outer zona fasciculata of animals treated with the antagonist (26.6 +/- 3.58%) compared with that in placebo-treated controls (6.8 +/- 0.91%). We conclude that chronic administration of antalarmin does not affect body weight, carbohydrate metabolism, or leptin expression, whereas it reduces adrenocortical function mildly, without anatomical, clinical, or biochemical evidence of causing adrenal atrophy. These results are promising for future uses of such an antagonist in the clinic.  相似文献   

10.
Little is known about the effects of intentional weight loss on the function of the hypothalamic-pituitary-adrenal (HPA) axis of obese individuals. We studied the HPA axis of 34 healthy obese women (body mass index, 40.2 +/- 7.9 kg/m2) before and after a 21.0 +/- 7.9-kg weight loss induced by a 26-week weight loss program that included 12 weeks of a 3350 kJ/day (800 Cal/day) liquid formula diet, 6 weeks of gradual refeeding, and 6 weeks of caloric stabilization at 5020-6280 kJ/day (1200-1500 Cal/day). Obese subjects were evaluated twice: before caloric restriction and during the last 3 weeks of caloric stabilization with a 3-h evening 1 microg/kg ovine CRH (oCRH) stimulation test. CRH-stimulated ACTH and cortisol values were compared to those of a control group of 12 normal weight women. Before caloric restriction, both ACTH and cortisol responses to oCRH were similar in obese women and normal weight controls. Weight loss did not significantly alter the ACTH response to oCRH; however, the total plasma cortisol response to oCRH decreased significantly with weight loss (area under the curve, 96,320 +/- 21,040 nmol/L x min before weight loss; 82,450 +/- 22,460 nmol/L x min after weight loss; P < 0.001). Cortisol-binding globulin also decreased significantly after weight loss (2,270 +/- 1,050 nmol/L) compared either to values obtained before weight loss (3,590 +/- 1,360 nmol/L; P < 0.001) or to those of normal weight controls (3,910 +/- 1,400 nmol/L; P < 0.001). Assay for plasma free cortisol, either before or 180 min after oCRH treatment, showed no significant changes in cortisol responses resulting from weight loss. As plasma free cortisol was not altered by weight reduction, the decrease in the total cortisol response to oCRH after weight loss appears to be secondary to significant decreases in cortisol-binding globulin. We conclude that when obese women lose large amounts of weight with a 3350 kJ/day, very low energy diet, such weight reduction does not significantly affect the HPA axis.  相似文献   

11.
Sex hormones have activational effects on the hypothalamic-pituitary-adrenal (HPA) axis in adulthood: For example, corticosterone release is influenced by gonadal status. These experiments investigated whether sex hormones have organizational effects on the HPA axis of male rats: Do sex hormones have relatively permanent effects on its development? In adults, both neonatal (neoGDX) and adult gonadectomy (adult GDX) resulted in elevated corticosterone (CORT) levels in response to stress compared to intact rats. Five days of testosterone propionate (TP) replacement was not as effective at attenuating CORT levels in neoGDX rats as in adult GDX rats. Neonatal GDX elevated corticosterone binding globulin (CBG) levels, whereas adult GDX was without effect. In Experiment 2 the effects of neonatal gonadectomy and neonatal treatment with either TP, estradiol benzoate (EB), or oil vehicle was examined. Despite 14 days of hormone replacement, neoGDX showed elevated CORT levels in response to stress compared to all other groups. A single neonatal dose of TP or EB in neoGDX rats eliminated the increased responsiveness. Neonatal TP and EB were without effect in sham-operated rats. Plasma CBG levels were elevated in neoGDX groups regardless of neonatal hormone treatment. Corticosteroid receptor binding levels were examined in various brain areas and the pituitary in two groups most different in their androgen experience: NeoGDX and shams that did not receive treatments as adults. NeoGDX had lower levels of glucocorticoid receptor, and higher levels of mineralocorticoid receptor binding in the pituitary. No other receptor differences were found. These experiments suggest that neonatal sex hormones influence the sensitivity of the HPA axis to sex hormones in adulthood and, thus, that they have organizational effects in addition to activational effects on HPA function.  相似文献   

12.
Nitric oxide synthase, an enzyme responsible for nitric oxide (NO) formation has been found in the hypothalamic paraventricular nucleus and median eminence, structures closely associated with regulation of the pituitary activity, and the pituitary gland itself. Nitric oxide modulates the stimulated release of CRH from the rat hypothalamus in vitro, which suggests its role in regulating the secretion of ACTH from the pituitary corticotrops and of corticosterone from the adrenal cortex. The purpose of the present study was to elucidate the yet unknown role of endogenous NO in the HPA response to central cholinergic stimulation in conscious rats. Neither L-arginine an NO precursor, nor the NO synthase blockers N omega-nitro-L-arginine methyl ester (L-NAME) and N omega-nitro-L-arginine (L-NNA) caused any consistent changes in the basal serum corticosterone levels. L-arginine, given in higher doses (120-150 mg/kg ip) 15 min prior to icv carbachol (2 micrograms), markedly diminished the carbachol-induced rise in corticosterone secretion. Systemic pretreatment with the nitric oxide synthase inhibitor L-NAME (5 mg/kg) significantly raised the carbachol-elicited corticosterone response, while addition of L-arginine completely blocked the effect of L-NAME. A similar increase in the carbachol-induced corticosterone response was produced by icv pretreatment with L-NAME (2 micrograms), indicating a central site of the NO interaction with cholinergic stimulation of the HPA response. L-NAME is a weak inhibitor of neuronal NOS itself, and must first be de-estrified to N omega-nitro-L-arginine to potently inhibit this enzyme. Systemic (10 mg/kg) and icv (1 microgram) pretreatment with L-NNA enhanced more effectively the carbachol-induced rise in corticosterone secretion than did pretreatment with L-NAME by either route. These results are the first direct evidence that endogenous NO significantly inhibits the HPA response to central cholinergic, muscarinic receptor stimulation under in vivo conditions.  相似文献   

13.
To determine whether altered noradrenergic activation of the hypothalamo-pituitary-adrenal (HPA) axis contributes to the attenuated neuroendocrine response to stress observed during lactation, the effect of intracerebroventricular injection of the alpha1-agonist methoxamine (100 microg) was compared between virgin and lactating rats. Virgin rats showed significant increases in plasma corticosterone after methoxamine, reaching 317 +/- 44 ng/ml at 10 min and remaining significantly elevated for more than 120 min, but lactating rats showed no significant increase in corticosterone levels. Furthermore, methoxamine induced an increase in paraventricular nucleus (PVN) CRF messenger RNA expression in virgin, but not lactating, animals. Both groups of rats exhibited comparable elevations in plasma PRL after methoxamine treatment. Arginine vasopressin messenger RNA expression within the parvocellular PVN was greater in the lactating animals than in the virgin controls, but methoxamine injection was without further effect. Studies performed on ovariectomized virgin rats and ovariectomized rats receiving estradiol or progesterone replacement failed to reproduce the attenuated HPA responses seen after methoxamine treatment, although methoxamine-induced PRL levels were greatly increased by estradiol, probably arising from an effect on hormone synthesis. In vitro electrophysiological recordings of PVN neurons in hypothalamic slices from proestrous virgin and lactating rats showed that 45-52% of neurons in both groups exhibited excitatory responses to 10(-4) M methoxamine, but there was a differential response to 10(-5) M methoxamine, with PVN neurons from lactating animals failing to show a response. These data show a selective down-regulation of alpha1-mediated activation of the HPA axis in lactating animals. This may contribute to the attenuated stress-induced activation of the HPA axis during lactation.  相似文献   

14.
Chronic hypoxia induces an overall sympathetic hyperactivation associated with a myocardial beta-receptor desensitization. The mechanisms involved in this desensitization were evaluated in 32 male Wistar rats kept in a hypobaric pressure chamber (PO2 = 40 Torr, atmospheric pressure = 450 Torr) for 5 days. In hypoxic compared with normoxic conditions, plasma norepinephrine (NE) levels were higher (2.1 +/- 0.7 vs. 0.6 +/- 0.2 ng/ml) with no difference in the plasma epinephrine levels (2.2 +/- 0.7 vs. 1.8 +/- 0.3 ng/ml). In hypoxia neuronal NE uptake measured by [3H]NE was decreased by 32% in the right ventricle (RV) and by 35% in the left ventricle (LV), and [3H]mazindol in vitro binding showed a decrease in uptake-1 carrier protein density by 38% in the RV and by 41% in the LV. In vitro binding assays with [3H]CGP-12177 indicate beta-adrenoceptor density reduced by 40% in the RV and by 32% in the LV, and this was due to reduced beta1-subtype fraction (competition binding experiments with practolol). Hypoxia reduced the production of cAMP induced by isoproterenol (36% decrease in the RV and 41% decrease in the LV), 5'-guanylylimododiphosphate (40% decrease in the RV and 42% decrease in the LV), and forskolin (39% decrease in the RV and 41% decrease in the LV) but did not alter the effect of MnCl2 and NaF. Quantitation of inhibitory G-protein alpha-subunit by immunochemical analysis showed a 46% increase in the cardiac-specific isoform Gialpha2 in hypoxic hearts. The present data demonstrate that in rats 5-day hypoxia leads to changes in pre- and postsynaptic myocardial adrenergic function. The myocardial desensitization associated with both a reduction in externalized beta1-adrenoceptor and an increase in inhibitory G-protein subunit may be caused by increased synaptic NE levels due to impaired uptake-1 system.  相似文献   

15.
AIM: To study the cardiovascular effect of total soyabeans saponins (TS) in brain and its relationship with monoamines. METHODS: After injection of TS (75 micrograms) into ventriculus lateralis cerebri (VLC) the changes of blood pressure (BP) and heart rate (HR) were observed and the contents of monoamines both in peripheral blood and brain (telencephalon, diencephalon, brainstem) were measured respectively by HPLC-ECD and fluorophotometry. RESULTS: After injection of TS into VLC, BP rise from 11.59 +/- 0.84 to 14.59 +/- 0.69 kPa; HR increased from 411 +/- 21 to 465 +/- 14 bpm; the contents of NE and E in peripheral blood increased from 6 +/- 3 to 64 +/- 44, from 6 +/- 2 to 38 +/- 34 nmol/L plasma, respectively, NE in brainstem increased from 14 +/- 0 to 18 +/- 3 nmol/g wet tissue respectively, but the contents of 5-HT in the 3 areas measured in the experiment decreased: in telecephalon from 9 +/- 1 to 5 +/- 1, in diencephalon from 14 +/- 2 to 7 +/- 2, in brainstem from 14 +/- 3 to 6 +/- 1 nmol/g wet tissue. CONCLUSIONS: The cardiovascular effects of TS in CNS were involved in the monoamine transmitters.  相似文献   

16.
The role that metabolic products play in regulating the hypothalamic-pituitary-adrenal (HPA) axis during strenuous exercise is speculative. This investigation examined the extent to which lactic acid, a major metabolite of anaerobic exercise, directly affects hypothalamic-pituitary function. Specifically, beta-endorphin secretion was measured from AtT-20 (D-16) mouse corticotroph tumor cells treated either acutely (15 min - 180 min) or chronically (1 day - 3 day) with physiologic levels of lactate (0. 5 x 10-3 M to 5 x 10-2 M) or lactate in combination with the corticotroph releasing factors: corticotroph releasing hormone (CRH), arginine vasopressin (AVP), norepinephrine and/or epinephrine. Findings with AtT-20 cell cultures were shown to be representative of responses in primary cultures of rat anterior pituitary. Lactic acid did not alter the spontaneous release of beta-endorphin by AtT-20 cells under either acute or chronic conditions. While CRH, norepinephrine, and epinephrine evoked significant increases in beta-endorphin release, lactate, in combination with these secretagogues did not alter their effects. Similarly, lactic acid failed to alter basal or stimulated release of beta-endorphin by primary cultures of rat anterior pituitary. The addition of lactate (3 x 103 M) to rat hypothalamic explants did, however, produce a modest but significant reduction in spontaneous CRH release, suggesting that lactate may facilitate the return to basal secretion following exercise. The present findings show that physiologic concentrations of lactate have no effect, either alone or in combination with other pituitary secretagogues, on corticotroph secretion. Whereas a physiologic action for lactate within the hypothalamus is possible, the present findings indicate that lactate is an inhibitor of CRH release. Thus, lactate does not appear to play a direct role in the profound activation of the HPA axis that occurs in response to strenuous exercise.  相似文献   

17.
OBJECTIVE: To study the dynamic response of the hypothalamo-pituitary- adrenal axis and of prolactin (PRL) pituitary secretion in rheumatoid arthritis (RA). METHODS: We performed a cortisol releasing hormone (CRH) provocation test followed by determination of adrenocorticotropin hormone (ACTH), beta-endorphin, and cortisol concentration, and then a thyrotropin releasing hormone (TRH) provocation test followed by assessment of PRL pituitary secretion in 10 patients with RA and 5 control subjects. All were women under 40 years of age. Hormone concentrations were assessed by radioimmunoassay. RESULTS: Basal PRL cortisol, and ACTH concentrations were similar in patients with RA and controls. We observed a dissociation between the pituitary secretion of beta-endorphin and of ACTH in response to CRH in RA. The ACTH peak and total ACTH production (area under the curve, AUC) were similar in the 2 groups. In contrast, basal beta-endorphin was increased in RA (12.6 +/- 1.41 vs 8.29 +/- 0.144 pg/ml), and the response upregulated (AUC: 83,080 +/- 12,000 vs 54,200 +/- 2400) after CRH compared to controls (p < 0.05). Cortisol adrenal response curve was blunted, but did not reach statistical significance. In contrast, the PRL response to TRH was increased at 120 and 150 min (3461 +/- 303 vs 1897 +/- 520 muIU/ml)(p < 0.01) in patients with RA, independent of disease activity. CONCLUSION: We observed upregulated pituitary PRL secretion in RA, and a dissociation of ACTH stress. The implication concerning the neuroendocrine system in the chronic immune response in RA is discussed.  相似文献   

18.
Endothelins (ETs) and their receptor subtypes A and B (ETA and ETB) are expressed in the various components of the mammalian hypothalamo-pituitary-adrenal (HPA) axis, but their involvement in the functional regulation of HPA is controversial. To gain insight into this topic, we have investigated the effects of ET-1 and/or the specific antagonists of ETA and ETB receptors (BQ-123 and BQ-788, respectively) on the plasma concentrations of ACTH, corticosterone and aldosterone of non-stressed (control) and ether- or cold-stressed rats. The study of the effects of the administration of the two ET-receptor antagonists alone could provide informations about the possible action of endogenous ETs on the HPA axis. Exogenous ET-1 increased ACTH, corticosterone and aldosterone blood levels in control rats, as well as evoked a sizable enhancement of the HPA axis response to ether stress and a marked depression of the response to cold stress. BQ-123 and BQ-788 did not prevent the stimulatory effect of exogenous ET-1 in control rats, but when administered alone, raised the plasma concentrations of ACTH, corticosterone and aldosterone. Both ET-receptor antagonists magnified the HPA axis response to ether and cold stresses, but their effect was not counteracted by exogenous ET-1. Although very difficult to interpret, our present findings allow us to conclude that endogenous ETs play a role in the maintenance of the basal activity of rat HPA axis acting through ETA and ETB receptor subtypes, which are partially insensitive to BQ-123 and BQ-788. Conversely, the involvement of ETs in the modulation of the HPA axis responses to various stresses is very doubtful.  相似文献   

19.
Opiates and opioids have complex effects on the hypothalamic-pituitary-adrenal axis, and they stimulate the sympathetic nervous system. This study was designed to clarify the role of brain beta-endorphin in the mechanism by which stress increases plasma concentrations of adrenocorticotropin (ACTH), epinephrine (E), and norepinephrine (NE). Intracerebroventricular (i.c.v.) administration of beta-endorphin to rats significantly increased plasma ACTH levels at doses of 0.09, 0.3, and 1.5 nmol, and plasma E and NE levels at doses of 0.3 and 1.5 nmol. The rise of plasma ACTH, E, and NE levels by 0.3 nmol beta-endorphin was inhibited by intravenous (i.v.) administration of 2 mg/kg b.wt. naloxone. I.v. administration of anti-rat corticotropin-releasing hormone (CRH) rabbit serum completely blocked the beta-endorphin-induced ACTH secretion without affecting the secretion of E and NE. I.c.v. administration of anti-beta-endorphin rabbit gamma-globulin attenuated a 30-min restraint stress-induced rise of plasma ACTH levels without significant influence on the rise of E and NE levels, whereas i.v. administration of naloxone attenuated the restraint stress-induced rise of plasma ACTH, E and NE levels. These results suggest that i.c.v. administration of beta-endorphin stimulates the secretion of ACTH, E, and NE through opiate receptor, and that brain CRH mediates the beta-endorphin-induced secretion of ACTH. The results also suggest that brain beta-endorphin is, at least in part, involved in the restraint stress-induced stimulation of the hypothalamic-pituitary-adrenal axis, and that some opioids other than beta-endorphin are involved in the stimulatory mechanism of the autonomic nervous system and the adrenal medulla in the rat.  相似文献   

20.
We have investigated the effects of a chronic inflammatory stress on substance P (SP) levels in the hypothalami of rats given adjuvant-induced arthritis (AA). Fourteen days after injection of Mycobacterium butyricum, substance P concentrations in the paraventricular nucleus (PVN) and median eminence/arcuate nucleus were significantly increased. In AA rats injected intraperitoneally with the specific neurokinin-1 receptor antagonist RP67580, plasma ACTH and corticosterone concentrations were significantly elevated, and corticotropin-releasing hormone (CRH) mRNA in the PVN was increased compared to the AA group which received saline alone. The increases in hypothalamic SP in AA, together with the data demonstrating that HPA axis activity is enhanced in AA following injection of a SP antagonist, are consistent with the hypothesis that SP is acting as an inhibitor of CRH expression in this model of chronic inflammatory stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号