首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The modification of a thermally sprayed cemented carbide (WC-CrC-Ni) layer by friction stir processing (FSP) was studied. The cemented carbide layer was successfully modified using a sintered cemented carbide (WC-Co) tool. The defects in the cemented carbide layer disappeared and the hardness of the cemented carbide layer increased to ∼ 2000 HV, which was about 1.5 times higher than that of the as-sprayed cemented carbide layer. Additionally, the cemented carbide layer was bonded to the SKD61 (Nominal composition: 0.35-0.42 mass% C, 0.8-1.2 mass% Si, 0.25-0.5 mass% Mn, 4.8-5.5 mass% Cr, 1.0-1.5 mass% Mo, 0.8-1.2 mass% V, balance Fe) substrate by diffusion of the metallic elements and the distortion of the coating-substrate interface producing a mechanical interlocking effect.  相似文献   

2.
In this paper, the microstructures and properties of coating from cemented carbide of WC–Fe–Co–Ni on the substrate 45 steel are studied. The effects of sintering temperature on the microstructures of coating, the interface structures between coating and the substrate, the microhardness distribution and its wear resistance in the coating are investigated. The results indicate that the coating is strongly metallurgical bonded with the substrate by the mutual diffusion and penetration of Fe towards the coating and W, Co, Ni towards the substrate at sintering temperature ranging from 1280 °C to 1300 °C. The coating obtained exhibits compact structure and uniformly distribution of WC with fine grain and porosity free from defects, having high microhardness and preferable wear resistance.  相似文献   

3.
Drilling hard rock with water jet is considered to be an efficient way to improve the work life of the cemented carbide blade. In this paper, cemented carbide material YG-6 is used on the drill bit in limestone drilling with water jet. Wear characteristics of the cemented carbide blades in drilling limestone with water jet is studied. Experiment results showed that the water jet pressure and nozzle diameter played an important influence on the wear rates of the cemented carbide blades in the drill bits. The wear rates of YG-6 blades decreased when the jet pressure increased. But the decline speed of wear rates was not even, it declined more and more slowly when the jet pressure upon 10 MPa. It was also showed that wear rates decrease with the increase of the nozzle diameter in the drill bit, for the bigger nozzle diameter could provide more impact force which could reduce the mechanical force on the YG-6 blades. SEM photographs were taken to characterize the wear mechanism of the cemented carbide blades in limestone drilling with water jet. Surface analysis demonstrated that cemented carbide blades in limestone drilling with water jet showed circular action of brittle fracture, grain pullout and polishing, which induced material removal process.  相似文献   

4.
Multiphase metal matrix composites (MMCs) which consist of recycled cemented carbide scrap and iron based matrices were produced, using different casting procedures, optimising the wear behaviour of these MMCs. The abrasive wear resistance of the MMCs was compared to different established materials for wear protection. Low stress abrasion tests were performed at room temperature and high stress abrasion tests at 500 °C to characterise their wear behaviour at different stress and temperature levels. The manufactured composites show promising microstructural features with low level of dissolution effects and good metallurgical bonding of hard phases. Wear results point out that the developed cast MMCs show much better abrasion resistance than existing commercial wear resistant steels and are competitive to established wear resistant hardfacings at ambient and elevated temperature levels.  相似文献   

5.
Two developments, including the deposition of hard chemical vapour deposition (CVD) coatings on cemented carbides and the use of innovative binders instead of Co for cemented carbides, have attracted worldwide interest. In this paper, ISO grade P30 cemented carbides with Fe/Ni and Co binders are prepared as the substrates, and adherent Ti(C,N) coatings are deposited on them by moderate temperature chemical vapour deposition (MTCVD) technique. The microstructure and properties of both the substrates and coated cemented carbides are studied.  相似文献   

6.
Micro-powder injection moulding (micro-PIM) is an advanced net-shaping process for the fabrication of metal and ceramic complex micro-components. Cemented tungsten carbide (WC–Co) hardmetal is known for its high hardness and wear resistance in various applications. Micro-PIM is a new alternative manufacturing technique for hardmetal micro-parts. In this work, the fabrication of WC–Co components via a micro-PIM process was studied. A fine WC–10Co–0.8VC (wt.%) powder was mixed with a binder system consisting of paraffin wax, low density polyethylene and stearic acid. A micro-component was injected at low pressure using a semi-automatic injection moulding machine. The injection temperature was determined from the rheological investigation of the feedstock. The binder extraction was carried out in solvent and thermal debinding methods under an argon atmosphere. Thermal gravimetric analysis was used to confirm the removal of the soluble binder from the green part. The sintering process has been performed within a temperature range of 1330–1450 °C under vacuum. After sintering, a density of 94.5% theoretical density was obtained, which is a reasonable value. The micro-components showed length shrinkage between 16 and 22% and good surface quality and hardness values when compared with conventional powder metallurgy. This research shows that micro-PIM is able to produce small WC–Co components with properties comparable to conventional powder metallurgy.  相似文献   

7.
Mechanical properties and microstructures of nanocrystalline WC–10Co cemented carbides were investigated. The nanocrystalline WC–10Co cemented carbide powders were manufactured by reduction and carbonization of the nanocrystalline precursor powders which were prepared by spray drying process of solution containing ammonia meta-tungstate (AMT) and cobalt nitrate. The WC powders were about 100 nm in diameter mixed homogeneously with Co binder phase and were sintered at 1375 °C under a pressure of 1 mTorr. In order to compare the microstructures and mechanical properties with those of nanocrystalline WC–10Co, commercial WC powders in a diameter range of 0.57–4 μm were mixed with Co powders, and were sintered at the same conditions as those of nanocrystalline powders. TaC, Cr3C2 and VC of varying amount were added into nanocrystalline WC–10Co cemented carbides as grain growth inhibitors. To investigate the microstructure of Co binder phase in the WC–10Co cemented carbides, Co–W–C alloy was fabricated at the temperature of sintering process for the WC–10Co cemented carbides. The hardness of WC–10Co cemented carbides increased with decreasing WC grain size following a Hall–Petch-type relationship. The fracture toughness of WC–10Co cemented carbides increases with increasing HCP/FCC ratio of Co binder phase by HCP/FCC phase transformation.  相似文献   

8.
1IntroductionTherearealotofnonmetallicmaterialssuchasceramics,fiberreinforcedplasticsandvariouswoodbasedproducts,nonferrousmetalsandalloys,andcompositeswhichcannotbemachinedusingcementedcarbidecuttingtools.Withthecontinualdevelopmentsandengine…  相似文献   

9.
For diamond-coated cemented carbide cutting tools, adhesion of the coatings remains to be a problem. This problem originates from the fact that the adhesion mechanism of the coating–substrate system is mechanical in nature and hence the adhesion of the coatings is ordinarily weak. As an effort to improve adhesion of diamond coatings to the substrates, Si was introduced into the diamond chemical vapor deposition (CVD) process, in order to produce a chemically active glue interface between the diamond coatings and the substrates. Preliminary results showed that by introducing a nontoxic precursor, octamethylcyclotetrasiloxane (D4), and under normal microwave plasma CVD conditions, Si could be made concentrating onto the interface, benefiting the improvement in adhesion of the diamond coatings.  相似文献   

10.
Cutting tool costs is one of the most important components of machining costs. For this reason, tool life should be improved using some methods such as cutting fluid, optimal cutting parameters, hard coatings and heat treatment. Recently, another one of the methods commonly used to improve tool life is cryogenic treatment. This study was designed to evaluate the effects of different holding times of deep cryogenic treatment on tool wear in turning of AISI 316 austenitic stainless steel. The cemented carbide inserts were cryogenically treated at −145 °C for 12, 24, 36, 48 and 60 h. Wear tests were conducted at four cutting speeds (100, 120, 140 and 160 m/min), a feed rate of 0.3 mm/rev and a 2.4 mm depth of cut under dry cutting conditions. The wear test results showed that flank wear and crater wear were present in all combinations of the cutting parameters. However, notch wear appeared only at lower cutting speeds (100 and 120 m/min). In general, the best wear resistance was obtained with cutting inserts cryogenically treated for 24 h. This case was attributed to the increased hardness and improved micro-structure of cemented carbide inserts. These improvements were confirmed through hardness, image processing, and XRD analyses.  相似文献   

11.
本文以WC、WO3、Co、C为原料,通过原位细晶溶解-析出长大法制备了超粗硬质合金,并分析了不同WO3添加量对合金微观结构及性能影响规律。结果表明:初始粉末中加入的WO3和C在烧结过程中将发生原位一步还原碳化反应转化为高活性的细WC,促进溶解-析出长大现象,使超粗硬质合金WC平均晶粒度随着WO3含量增加而增大。同时,WO3添加能够减少粗WC晶粒微观缺陷和曲边的阶梯状表面,平直化晶粒边界,使其形貌趋于形成完整的三角棱柱体,其(0 0 0 1)晶面占比高,能够有效提高合金硬度,阻碍裂纹扩展,增加钴相韧性断裂比例。当WO3添加量为4.20wt.%时,制备的超粗硬质合金具有最大的硬度(1085kgf/mm2)和抗弯强度(2692MPa)。  相似文献   

12.
Owing to the absence of metal binder, binderless cemented carbides have higher wear, corrosion, and oxidation resistance. WC-0.3VC-0.5Cr3C2 powders with an average particle size of 200nm and a little amount of active element were consolidated by spark plasma sintering. The sintered microstructure revealed that the average WC grain size was 0.24μm, which was almost consistent with the initial fine powder. The results of XRD showed that W2C phase was formed. Nearly complete densification of ultrafine binderless cemented carbide was achieved by sintering at 1400℃ for 120s under 50MPa. The resulting hardness and the fracture toughness were 28.18 GPa and 6.05MPa·m1/2, respectively.  相似文献   

13.
基于包混和复合添加工艺的多孔碳化硅陶瓷的制备和性能   总被引:1,自引:0,他引:1  
采用包混工艺合成核-壳结构的硅-树脂先驱体粉体,引入Al2O3-SiO2-Y2O3复合添加剂,通过成型、炭化和烧结工艺制备多孔碳化硅陶瓷。分析多孔碳化硅陶瓷样品的物相、形貌、孔隙率、热导率、热膨胀系数和抗热震性能。结果表明:复合添加能够在较低的温度下制得多孔碳化硅陶瓷;陶瓷样品的晶粒较小,明显增强了多孔碳化硅陶瓷的导热性能;复合添加提高了碳化硅陶瓷的抗热震性能,添加Al2O3-SiO2-Y2O3并且在1650℃下烧结制备的多孔碳化硅陶瓷经过30次热震后的抗弯强度损失率为6.5%;陶瓷样品的孔壁更加光滑,孔分布更均匀;复合添加对多孔碳化硅陶瓷热膨胀系数的影响较小。  相似文献   

14.
The microstructure of a binderless cemented carbide with < 0.5 wt% Co has been analysed using transmission electron microscopy (TEM) in combination with an electron energy loss spectroscopy (EELS) detector and an imaging filter. In particular, microstructural properties of the grain boundaries were studied. The analysis identified different kinds of grain boundaries in the material: boundaries between WC grains containing nanometre-thick layers of Co; WC-WC grain boundaries with perfect lattice matching and no or very small amounts of Co; and boundaries between WC and TiC grains containing high amounts of C, but no Co. The influence of the grain boundaries on the mechanical properties is discussed.  相似文献   

15.
连建肖  张秀玲  杨桥  贾晓鸣 《硬质合金》2011,28(1):24-28,37
选用几种工业上常用的酸类润滑添加剂与三乙醇胺进行酯化反应生成不同润滑剂,将反应产物配成一定浓度的溶液对纯钴片和硬质合金刀具在常温下做浸泡实验,用纯钴片做电极与饱和甘汞电极组成原电池测定电动势,根据电动势的大小结合电镜扫描分析判断不同润滑剂溶液使金属Co浸出的情况,优选出抑制金属Co浸出效果好的润滑剂。实验结果表明:油酸三乙醇胺和油酸硼酸三乙醇胺对Co的浸出有抑制作用。  相似文献   

16.
硬质合金组合轧辊的结构分析   总被引:4,自引:2,他引:4  
姜振峰  赵坤 《轧钢》2003,20(6):49-51
针对棒材轧机应用硬质合金轧辊时,辊环结构及辊环与轧辊轴连接方式存在的问题,介绍了国外3种获成功应用的硬质合金组合轧辊的结构、使用材质、安装和设计特点。  相似文献   

17.
选取硬质合金成型用的四种石蜡为研究对象,通过热失重试验、压坯粘结强度测试及烧结合金的性能对比,发现不同的石蜡对硬质合金混合料的成型性能有较大的差别,经过改良的国产高密石蜡具有更佳的成型性能。对石蜡的改良研究,将会在保持石蜡本质特性不变的前提下,进一步拓展石蜡在硬质合金粉末成型方面的潜力。  相似文献   

18.
Nanocrystalline tungsten carbide has been obtained by reduction/carburization at low temperature from precursors obtained by freeze-drying of aqueous solutions. Nanocrystalline WC powders with a adequate content of carbon were mixed with submicrometric Cobalt powder (12 wt.%), obtained by same synthesis method, and sintered in vacuum furnace. The cemented carbides fabricated from experimental powders were compared with both commercial ultrafine and nanocrystalline WC-12Co mixtures consolidated by the same route. The synthesised powders were characterized by X-ray powder diffraction, elemental analysis and scanning and high resolution transmission electron microscopy. On the other hand, density, microstructure, hardness and fracture toughness together with X-ray diffraction analysis of the sintered materials were evaluated. The cemented carbides obtained from synthesised powders exhibited a WC platelet-based homogeneous microstructure. This anisotropic growth might be due to the presence of stacking faults parallel to the basal plane in the starting WC powder, which would promote the defect-assisted preferential growth. These materials showed excellent mechanical properties, with a superior hardness/fracture toughness combination compared to materials prepared from commercial mixtures.  相似文献   

19.
In this paper, Zr-O-B compounds that strengthened quasi-nano alumina composites were produced by hot pressing techniques. The mechanical properties of the composite as well as its wear behaviors, coupled with a cemented carbide ball in unlubricated conditions, were investigated systemically. SEM and EDX techniques were employed to observe the worn surfaces of the test specimens and antifriction mechanisms were simultaneously discussed. Analysis of the experimental data and observation on worn surfaces revealed that the improvement in the wear resistance of composites may be attributed mainly to the addition of Zr-O-B compounds in the alumina matrix. The mechanism responsible was explained as the formation of a lubricating film between the sliding couple, and the composition of this lubricating film was found to be ZrO2 and B2O3. The generated lubricating film can decrease the friction coefficient of the composites, and prevents the wear rate from reaching the theoretical value.  相似文献   

20.
以YG10硬质合金为研究对象,深冷处理技术为手段,采用正交试验的方法,在不同深冷温度、深冷时间、交变次数的情况下对其进行深冷处理,并对处理后的试样进行磨损试验、硬度试验和显微组织分析试验.结果表明,最优深冷处理工艺使YG10合金显微硬度提升33.6%,耐磨性提升72.8%,深冷温度是影响YG10合金耐磨性能最大的因素....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号