首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this letter, we report the fabrication of high-voltage and low-loss 4H-SiC Schottky-barrier diodes (SBDs) with a performance close to the theoretical limit using a Mo contact annealed at high-temperature. High-temperature annealing for the Mo contact was found to be effective in controlling the Schottky-barrier height at 1.2-1.3 eV without degradation of n-factor and reverse characteristics. We successfully obtained a 1-mm/sup 2/ Mo-4H-SiC SBD with a breakdown voltage (V/sub b/) of 4.15 kV and a specific on resistance (R/sub on/) of 9.07 m/spl Omega//spl middot/cm/sup 2/, achieving a best V/sub b//sup 2//R/sub on/ value of 1898 MW/cm/sup 2/. We also obtained a 9-mm/sup 2/ Mo-4H-SiC SBD with V/sub b/ of 4.40 kV and R/sub on/ of 12.20 m/spl Omega//spl middot/cm/sup 2/.  相似文献   

2.
Design and fabrication of 4H-SiC(0001) lateral MOSFETs with a two-zone reduced surface field structure have been investigated. The dose dependencies of experimental breakdown voltage show good agreement with simulation. Through the optimization of implant dose, high-temperature (1700/spl deg/C) annealing after ion implantation, and reduction of channel length, a breakdown voltage of 1330 V and a low on-resistance of 67 m/spl Omega//spl middot/cm/sup 2/ have been obtained. The figure-of-merit (V/sub B//sup 2//R/sub on/) of the present device reaches 26 MW/cm/sup 2/, being the best performance among lateral MOSFETs reported. The temperature dependence of static characteristics is also presented.  相似文献   

3.
High breakdown voltage AlGaN-GaN power high-electron mobility transistors (HEMTs) on an insulating substrate were designed for the power electronics application. The field plate structure was employed for high breakdown voltage. The field plate length, the insulator thickness and AlGaN layer doping concentration were design parameters for the breakdown voltage. The optimization of the contact length and contact resistivity reduction were effective to reduce the specific on-resistance. The tradeoff characteristics between the on-resistance and the breakdown voltage can be improved by the optimization of the above design parameters, and the on-resistance can be estimated to be about 0.6 m/spl Omega//spl middot/cm/sup 2/ for the breakdown voltage of 600 V. This on-resistance is almost the same as that for the device on a conductive substrate.  相似文献   

4.
This letter reports a newly achieved best result on the specific ON-resistance (R/sub SP/spl I.bar/ON/) of power 4H-SiC bipolar junction transistors (BJTs). A 4H-SiC BJT based on a 12-/spl mu/m drift layer shows a record-low specific-ON resistance of only 2.9 m/spl Omega//spl middot/cm/sup 2/, with an open-base collector-to-emitter blocking voltage (V/sub ceo/) of 757 V, and a current gain of 18.8. The active area of this 4H-SiC BJT is 0.61 mm/sup 2/, and it has a fully interdigitated design. This high-performance 4H-SiC BJT conducts up to 5.24 A at a forward voltage drop of V/sub CE/=2.5 V, corresponding to a low R/sub SP-ON/ of 2.9 m/spl Omega//spl middot/cm/sup 2/ up to J/sub c/=859 A/cm/sup 2/. This is the lowest specific ON-resistance ever reported for high-power 4H-SiC BJTs.  相似文献   

5.
Design and fabrication of lateral SiC reduced surface field (RESURF) MOSFETs have been investigated. The doping concentration (dose) of the RESURF and lightly doped drain regions has been optimized to reduce the electric field crowding at the drain edge or in the gate oxide by using device simulation. The optimum oxidation condition depends on the polytype: N/sub 2/O oxidation at 1300/spl deg/C seems to be suitable for 4H-SiC, and dry O/sub 2/ oxidation at 1250/spl deg/C for 6H-SiC. The average inversion-channel mobility is 22, 78, and 68 cm/sup 2//Vs for 4H-SiC(0001), (112~0), and 6H-SiC(0001) MOSFETs, respectively. RESURF MOSFETs have been fabricated on 10-/spl mu/m-thick p-type 4H-SiC(0001), (112~0), and 6H-SiC(0001) epilayers with an acceptor concentration of 1/spl times/10/sup 16/ cm/sup -3/. A 6H-SiC(0001) RESURF MOSFET with a 3-/spl mu/m channel length exhibits a high breakdown voltage of 1620 V and an on-resistance of 234 m/spl Omega//spl middot/cm/sup 2/. A 4H-SiC(112~0) RESURF MOSFET shows the characteristics of 1230 V-138 m/spl Omega//spl middot/cm/sup 2/.  相似文献   

6.
This letter reports the development of a high-performance power 4H-SiC bipolar junction transistor (BJT) with, simultaneously, a high blocking voltage and a low specific on-resistance (R/spl I.bar//sub ON/). A single BJT cell with an active area of 0.61 mm/sup 2/ achieves an open base collector-to-emitter blocking voltage (V/sub ceo/) of 1677 V and conducts up to 3.2 A at a forward voltage drop of V/sub CE/=3.0 V, corresponding to a low R/spl I.bar//sub ON/ of 5.7 m/spl Omega//spl middot/cm/sup 2/ up to Jc=525 A/cm/sup 2/ and a record high value of V/sub B//sup 2//R/sub SP/spl I.bar/ON/ of 493 MW/cm/sup 2/.  相似文献   

7.
The design, fabrication and characterisation of a high performance 4H-SiC diode of 1789 V-6.6 A with a low differential specific-on resistance (R/sub SP/spl I.bar/ON/) of 6.68 m/spl Omega/ /spl middot/ cm/sup 2/, based on a 10.3 /spl mu/m 4H-SiC blocking layer doped to 6.6/spl times/10/sup 15/ cm/sup -3/, is reported. The corresponding figure-of-merit of V/sub B//sup 2//R/sub SP/spl I.bar/ON/ for this diode is 479 MW/cm/sup 2/, which substantially surpasses previous records for all other MPS diodes.  相似文献   

8.
We report, to our knowledge, the best high-temperature characteristics and thermal stability of a novel /spl delta/-doped In/sub 0.425/Al/sub 0.575/As--In/sub 0.65/Ga/sub 0.35/As--GaAs metamorphic high-electron mobility transistor. High-temperature device characteristics, including extrinsic transconductance (g/sub m/), drain saturation current density (I/sub DSS/), on/off-state breakdown voltages (BV/sub on//BV/sub GD/), turn-on voltage (V/sub on/), and the gate-voltage swing have been extensively investigated for the gate dimensions of 0.65/spl times/200 /spl mu/m/sup 2/. The cutoff frequency (f/sub T/) and maximum oscillation frequency (f/sub max/), at 300 K, are 55.4 and 77.5 GHz at V/sub DS/=2 V, respectively. Moreover, the distinguished positive thermal threshold coefficient (/spl part/V/sub th///spl part/T) is superiorly as low as to 0.45 mV/K.  相似文献   

9.
Indium-tin-oxide (ITO) is deposited as a transparent current spreading layer of GaN-based light-emitting diodes (LEDs). To reduce the interfacial Schottky barrier height, a thin p-In/sub 0.1/Ga/sub 0.9/N layer is grown as an intermediate between ITO and p-GaN. The contact resistivity around 2.6/spl times/10/sup -2/ /spl Omega//spl middot/cm/sup 2/ results in a moderately high forward voltage LED of 3.43 V operated at 20 mA. However, the external quantum efficiency and power efficiency are enhanced by 46% and 36%, respectively, in comparison with the conventional Ni-Au contact LEDs. In the life test, the power degradation of the p-In/sub 0.1/Ga/sub 0.9/N-ITO contact samples also exhibits a lower value than that of the conventional ones.  相似文献   

10.
Lateral reduced surface field (RESURF) metal-oxide-semiconductor field-effect transistors (MOSFETs) have been fabricated on 4H-SiC(0001/sup ~/) carbon face (C-face) substrates. The channel mobility of a lateral test MOSFET on a C-face was 41 cm/sup 2//V/spl middot/s, which was much higher than 5 cm/sup 2//V/spl middot/s for that on a Si-face. The specific on-resistance of the lateral RESURF MOSFET on a C-face was 79/spl Omega/ /spl middot/ cm/sup 2/, at a gate voltage of 25 V and drain voltage of 1 V. The breakdown voltage was 460 V, which was 79% of the designed breakdown voltage of 600 V. We measured the temperature dependence of R/sub on, sp/ for the RESURF MOSFET on the C-face. The R/sub on, sp/ increased with the increase in temperature.  相似文献   

11.
10-kV, 123-m/spl Omega//spl middot/cm/sup 2/ power DMOSFETs in 4H-SiC are demonstrated. A 42% reduction in R/sub on,sp/, compared to a previously reported value, was achieved by using an 8 /spl times/ 10/sup 14/ cm/sup -3/ doped, 85-/spl mu/m-thick drift epilayer. An effective channel mobility of 22 cm/sup 2//Vs was measured from a test MOSFET. A specific on-resistance of 123 m/spl Omega//spl middot/cm/sup 2/ were measured with a gate bias of 18 V, which corresponds to an E/sub ox/ of 3 MV/cm. A leakage current of 197 /spl mu/A was measured at a drain bias of 10 kV from a 4H-SiC DMOSFET with an active area of 4.24 /spl times/ 10/sup -3/ cm/sup 2/. A switching time of 100 ns was measured in 4.6-kV, 1.3-A switching measurements. This shows that the 4H-SiC power DMOSFETS are ideal for high-voltage, high-speed switching applications.  相似文献   

12.
A recessed-gate structure has been studied with a view to realizing normally off operation of high-voltage AlGaN/GaN high-electron mobility transistors (HEMTs) for power electronics applications. The recessed-gate structure is very attractive for realizing normally off high-voltage AlGaN/GaN HEMTs because the gate threshold voltage can be controlled by the etching depth of the recess without significant increase in on-resistance characteristics. With this structure the threshold voltage can be increased with the reduction of two-dimensional electron gas (2DEG) density only under the gate electrode without reduction of 2DEG density in the other channel regions such as the channel between drain and gate. The threshold-voltage increase was experimentally demonstrated. The threshold voltage of fabricated recessed-gate device increased to -0.14 V while the threshold voltage without the recessed-gate structure was about -4 V. The specific on-resistance of the device was maintained as low as 4 m/spl Omega//spl middot/cm/sup 2/ and the breakdown voltage was 435 V. The on-resistance and the breakdown voltage tradeoff characteristics were the same as those of normally on devices. From the viewpoint of device design, the on-resistance for the normally off device was modeled using the relationship between the AlGaN layer thickness under the gate electrode and the 2DEG density. It is found that the MIS gate structure and the recess etching without the offset region between recess edge and gate electrode will further improve the on-resistance. The simulation results show the possibility of the on-resistance below 1 m/spl Omega//spl middot/cm/sup 2/ for normally off AlGaN/GaN HEMTs operating at several hundred volts with threshold voltage up to +1 V.  相似文献   

13.
Type-II InP/GaAsSb/InP double heterojunction bipolar transistors (DHBTs) with a 15-nm base were fabricated by contact lithography: 0.73/spl times/11 /spl mu/m/sup 2/ emitter devices feature f/sub T/=384GHz (f/sub MAX/=262GHz) and BV/sub CEO/=6V. This is the highest f/sub T/ ever reported for InP/GaAsSb DHBTs, and an "all-technology" record f/sub T//spl times/BV/sub CEO/ product of 2304 GHz/spl middot/V. This result is credited to the favorable scaling of InP/GaAsSb/InP DHBT breakdown voltages (BV/sub CEO/) in thin collector structures.  相似文献   

14.
This paper presents the development of 1000 V, 30A bipolar junction transistor (BJT) with high dc current gain in 4H-SiC. BJT devices with an active area of 3/spl times/3 mm/sup 2/ showed a forward on-current of 30 A, which corresponds to a current density of 333 A/cm/sup 2/, at a forward voltage drop of 2 V. A common-emitter current gain of 40, along with a low specific on-resistance of 6.0m/spl Omega//spl middot/cm/sup 2/ was observed at room temperature. These results show significant improvement over state-of-the-art. High temperature current-voltage characteristics were also performed on the large-area bipolar junction transistor device. A collector current of 10A is observed at V/sub CE/=2 V and I/sub B/=600 mA at 225/spl deg/C. The on-resistance increases to 22.5 m/spl Omega//spl middot/cm/sup 2/ at higher temperatures, while the dc current gain decreases to 30 at 275/spl deg/C. A sharp avalanche behavior was observed at a collector voltage of 1000 V. Inductive switching measurements at room temperature with a power supply voltage of 500 V show fast switching with a turn-off time of about 60 ns and a turn-on time of 32 ns, which is a result of the low resistance in the base.  相似文献   

15.
Undoped AlGaN-GaN power high electron mobility transistors (HEMTs) on sapphire substrate with 470-V breakdown voltage were fabricated and demonstrated as a main switching device for a high-voltage dc-dc converter. The fabricated power HEMT realized a high breakdown voltage with a field plate structure and a low on-state resistance of 3.9 m/spl Omega//spl middot/cm/sup 2/, which is 10 /spl times/ lower than that of conventional Si MOSFETs. The dc-dc converter operation of a down chopper circuit was demonstrated using the fabricated device at the input voltage of 300 V. These results show the promising possibilities of the AlGaN-GaN power HEMTs on sapphire substrate for future switching power devices.  相似文献   

16.
We report a 0.7/spl times/8 /spl mu/m/sup 2/ InAlAs-InGaAs-InP double heterojunction bipolar transistor, fabricated in a molecular-beam epitaxy (MBE) regrown-emitter technology, exhibiting 160 GHz f/sub T/ and 140 GHz f/sub MAX/. These initial results are the first known RF results for a nonselective regrown-emitter heterojunction bipolar transistor, and the fastest ever reported using a regrown base-emitter heterojunction. The maximum current density is J/sub E/=8/spl times/10/sup 5/ A/cm/sup 2/ and the collector breakdown voltage V/sub CEO/ is 6 V for a 1500-/spl Aring/ collector. In this technology, the dimension of base-emitter junction has been scaled to an area as low as 0.3/spl times/4 /spl mu/m/sup 2/ while a larger-area extrinsic emitter maintains lower emitter access resistance. Furthermore, the application of a refractory metal (Ti-W) base contact beneath the extrinsic emitter regrowth achieves a fully self-aligned device topology.  相似文献   

17.
A high breakdown voltage and a high turn-on voltage (Al/sub 0.3/Ga/sub 0.7/)/sub 0.5/In/sub 0.5/P/InGaAs quasi-enhancement-mode (E-mode) pseudomorphic HEMT (pHEMTs) with field-plate (FP) process is reported for the first time. Between gate and drain terminal, the transistor has a FP metal of 1 /spl mu/m, which is connected to a source terminal. The fabricated 0.5/spl times/150 /spl mu/m/sup 2/ device can be operated with gate voltage up to 1.6 V owing to its high Schottky turn-on voltage (V/sub ON/=0.85 V), which corresponds to a high drain-to-source current (I/sub ds/) of 420 mA/mm when drain-to-source voltage (V/sub ds/) is 3.5 V. By adopting the FP technology and large barrier height (Al/sub 0.3/Ga/sub 0.7/)/sub 0.5/In/sub 0.5/P layer design, the device achieved a high breakdown voltage of -47 V. The measured maximum transconductance, current gain cutoff frequency and maximum oscillation frequency are 370 mS/mm, 22 GHz , and 85 GHz, respectively. Under 5.2-GHz operation, a 15.2 dBm (220 mW/mm) and a 17.8 dBm (405 mW/mm) saturated output power can be achieved when drain voltage are 3.5 and 20 V. These characteristics demonstrate that the field-plated (Al/sub 0.3/Ga/sub 0.7/)/sub 0.5/In/sub 0.5/P E-mode pHEMTs have great potential for microwave power device applications.  相似文献   

18.
Large-area (500-/spl mu/m diameter) mesa-structure In/sub 0.53/Ga/sub 0.47/As-In/sub 0.52/Al/sub 0.48/As avalanche photodiodes (APDs) are reported. The dark current density was /spl sim/2.5/spl times/10/sup -2/ nA//spl mu/m/sup 2/ at 90% of breakdown; low surface leakage current density (/spl sim/4.2 pA//spl mu/m) was achieved with wet chemical etching and SiO/sub 2/ passivation. An 18 /spl times/ 18 APD array with uniform distributions of breakdown voltage, dark current, and multiplication gain has also been demonstrated. The APDs in the array achieved 3-dB bandwidth of /spl sim/8 GHz at low gain and a gain-bandwidth product of /spl sim/120 GHz.  相似文献   

19.
For the first time, we successfully fabricated and demonstrated high performance metal-insulator-metal (MIM) capacitors with HfO/sub 2/-Al/sub 2/O/sub 3/ laminate dielectric using atomic layer deposition (ALD) technique. Our data indicates that the laminate MIM capacitor can provide high capacitance density of 12.8 fF//spl mu/m/sup 2/ from 10 kHz up to 20 GHz, very low leakage current of 3.2 /spl times/ 10/sup -8/ A/cm/sup 2/ at 3.3 V, small linear voltage coefficient of capacitance of 240 ppm/V together with quadratic one of 1830 ppm/V/sup 2/, temperature coefficient of capacitance of 182 ppm//spl deg/C, and high breakdown field of /spl sim/6 MV/cm as well as promising reliability. As a result, the HfO/sub 2/-Al/sub 2/O/sub 3/ laminate is a very promising candidate for next generation MIM capacitor for radio frequency and mixed signal integrated circuit applications.  相似文献   

20.
Due to the low mobility and wide bandgap characteristics of the undoped AlGaN layer used in the conventional AlGaN-GaN HEMT as a cap layer, the RF performance of this device will be limited by its high contact resistance and high knee voltage. In this letter, we propose using the n/sup +/-GaN cap layer and the selective gate recess etching technology on the AlGaN-GaN HEMTs fabrication. With this n/sup +/-GaN instead of the undoped AlGaN as a cap layer, the device contact resistance is reduced from 1.0 to 0.4 /spl Omega//spl middot/mm. The 0.3 /spl mu/m gate-length device demonstrates an I/sub ds,max/ of 1.1 A/mm, a g/sub m,max/ of 220 mS/mm, an f/sub T/ of 43 GHz, an f/sub max/ of 68 GHz, and an output power density of 4 W/mm at 2.4 GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号