首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We modified a dual-cell linear ion trap mass spectrometer to perform infrared multiphoton dissociation (IRMPD) in the low-pressure trap of a dual-cell quadrupole linear ion trap (dual-cell QLT) and perform large-scale IRMPD analyses of complex peptide mixtures. Upon optimization of activation parameters (precursor q-value, irradiation time, and photon flux), IRMPD subtly, but significantly, outperforms resonant-excitation collisional-activated dissociation (CAD) for peptides identified at a 1% false-discovery rate (FDR) from a yeast tryptic digest (95% confidence, p = 0.019). We further demonstrate that IRMPD is compatible with the analysis of isobaric-tagged peptides. Using fixed QLT rf amplitude allows for the consistent retention of reporter ions, but necessitates the use of variable IRMPD irradiation times, dependent upon precursor mass to charge (m/z). We show that IRMPD activation parameters can be tuned to allow for effective peptide identification and quantitation simultaneously. We thus conclude that IRMPD performed in a dual-cell ion trap is an effective option for the large-scale analysis of both unmodified and isobaric-tagged peptides.  相似文献   

2.
Noncovalent duplex DNA/drug complexes formed between one of three 14-base pair non-self-complementary duplexes with variable GC content and one of eight different DNA-interactive drugs are characterized by infrared multiphoton dissociation (IRMPD), and the resulting spectra are compared to conventional collisionally activated dissociation (CAD) mass spectra in a quadrupole ion trap mass spectrometer. IRMPD yielded comparable information to previously reported CAD results in which strand separation pathways dominate for complexes containing the more AT-rich sequences and/or minor groove binding drugs, whereas drug ejection pathways are prominent for complexes containing intercalating drugs and/or duplexes with higher GC base content. The large photoabsorptive cross section of the phosphate backbone at 10.6 mum promotes highly efficient dissociation within short irradiation times (<2 ms at 50 W) or using lower laser powers and longer irradiation times (<15 W at 15 ms), activation times on par with or shorter than standard CAD experiments. This large photoabsorptivity leads to a controllable ion activation method which can be used to produce qualitatively similar spectra to CAD while minimizing uninformative base loss dissociation pathways or instead be tuned to yield a high degree of secondary fragmentation. Additionally, the low-mass cutoff associated with conventional CAD plays no role in IRMPD, resulting in richer MS/MS information in the low m/z region. IRMPD is also used for multiadduct dissociation in order to increase MS/MS sensitivity, and a two-stage IRMPD/IRMPD method is demonstrated as a means to give specific DNA sequence information that would be useful when screening drug binding by mixtures of duplexes.  相似文献   

3.
Zhang Z 《Analytical chemistry》2004,76(21):6374-6383
Mass spectrometry-based de novo peptide sequencing is generally more reliable on high-resolution instruments owing to their high resolution and mass accuracy. On a lower resolution instrument such as the more widely used quadrupole ion traps, de novo peptide sequencing is not so reliable or requires more MS(3) experiments. However, the peptide CID spectrum has been demonstrated to be quite reproducible on an ion trap instrument and can be predicted with good accuracy. A new de novo peptide sequencing technique, DACSIM, combining a divide-and-conquer algorithm for deriving sequence candidates and spectrum simulation for sequence refinement, is developed for spectra acquired on an ion trap instrument. When DACSIM was used to sequence peptides 500-1900 u in mass generated from proteolytic digests of hemoglobin and myoglobin, the success rate was 70% with a false positive rate of only 6%, when isoleucine and leucine residues were not distinguished.  相似文献   

4.
Ultraviolet photodissociation (UVPD) of chromophore-modified peptides enhances the capabilities for de novo sequencing in a quadrupole ion trap mass spectrometer. Attachment of UV chromophores allows efficient photoactivation of not only the precursor ions but also any fragments that retain the chromophore functionality. For doubly protonated peptides, UVPD leads to a vast reduction in MS/MS complexity. The array of b and y ions typically seen upon collisionally activated dissociation is reduced to a single series of either y or b ions by UVPD depending on the location of the chromophore (i.e., N- or C-terminus). The sulfonation reagent Alexa Fluor 350 (AF350) provided the best overall results for the singly and doubly charged peptides by UVPD. The nonsulfonated analogue of AF350, 7-amino-4-methylcoumarin-3-acetic acid, also led to simplified spectra for doubly charged, but not singly charged, peptides by UVPD. Dinitrophenyl-peptides also yielded simplified spectra by UVPD albeit with a small amount of internal fragments accompanying the series of diagnostic y ions. The success of this MS/MS simplification process stems from extensive secondary fragmentation of any chromophore-containing fragments upon exposure to subsequent laser pulses. Energy-variable UVPD reveals that the abundances of non-chromophore-containing y fragment ions increase linearly with laser pulse energy, suggesting secondary dissociation of these species is insignificant. The abundances of chromophore-containing a/b fragment ions follow a quadratic trend due to the extensive secondary fragmentation at higher laser energies or multiple pulses.  相似文献   

5.
A novel scheme for performing infrared multiphoton dissociation (IRMPD) is presented in which a hollow fiber waveguide (HFWG) is used to transmit IR radiation into the ion storage region of a mass spectrometer. Efficient dissociation of oligonucleotide and protein ions is demonstrated on an ESI-FTICR instrument in which IRMPD is performed in the external ion reservoir and on a quadrupole ion trap. Using a simple optical scheme consisting of a single focusing lens and an x, y translator, the 10.6-microm IR laser beam, initially 3.5 mm in diameter, is focused into the vacuum-sealed HFWG. The small internal diameter and the high transfer efficiency of the waveguide allow IR radiation of high power density to be employed for IRMPD. In studies performed on a quadrupole ion trap, a 500-microm-i.d. waveguide was used as a medium to transmit IR radiation directly through a 700-microm orifice in the ring electrode. Efficient IRMPD of both a 12-mer oligonucleotide and the protein melittin were performed at laser powers of 0.5 and 3.2 W, respectively.  相似文献   

6.
An electrospray ionization, dual gate, ion mobility, quadrupole ion trap mass spectrometer (ESI-DG-IM-QIT-MS) was constructed and evaluated for its ability to select mobility-filtered ions prior to mass analysis. While modification of the common signal-averaged ion mobility experiment was required, no modifications to the QIT were necessary. The dual gate scanning mode of operation was used to acquire mobility spectra, whereas the single mobility monitoring experiment selectively filtered ions for concentration and subsequent fragmentation within the QIT. Ion mobility separation of positively charged peptides and negatively charged carbohydrates, followed by MS fragmentation, was demonstrated. For a 1-min acquisition time, it was possible to obtain complete de novo sequence information for the examined peptides. Fragmentation of the negative carbohydrate chlorine adducts yielded ions characteristic of cross-ring and glycosidic bond cleavage. Previous unions of atmospheric pressure ion mobility and mass spectrometry have been limited in their ability to reproducibly obtain MSn data for mobility separation ions. The union of high-pressure ion mobility with quadrupole ion trap mass spectrometry presents the unique opportunity to obtain more detailed information regarding the chemistries of gas-phase ions.  相似文献   

7.
A strategy for increasing the efficiency of infrared multiphoton dissociation (IRMPD) in a quadrupole ion trap (QIT) is described. IR-active ligands (IRALs) are incorporated into noncovalent complexes of the type [M2+(analyte) IRAL]+, where M is a transition metal such as copper or cobalt and IRAL is an auxiliary ligand with an IR-active phosphonate functional group. The complexes are formed via self-assembly in solution directly prior to ESI-MS analysis. We demonstrate this new IRMPD approach for the structural characterization of flavonoids. The fragment ions obtained by IRMPD are similar to those obtained by CAD and allow facile isomer differentiation of flavonoids. Fourier transform infrared absorption attenuated total reflectance (FTIR-ATR) and energy-variable CAD experiments indicate that the high IRMPD efficiencies stem from the very large IR absorptivities of the IR-active ligands.  相似文献   

8.
A major challenge encountered in mass spectrometric metabolite analysis is the identification and structural characterization of metabolites. Fourier transform ion cyclotron resonance mass spectrometry is a valuable technique for metabolite structural determination because it provides accurate masses and allows for multiple MS/MS fragmentation strategies, including infrared multiphoton dissociation (IRMPD) and electron-induced dissociation (EID). Collision activated dissociation (CAD) is currently the most commonly used MS/MS technique for metabolite structural characterization. In contrast, IRMPD and EID have had very limited, if any, application for metabolite characterization. Here, we explore IRMPD and EID of phosphate-containing metabolites and compare the resulting fragmentation patterns to those of CAD. Our results show that CAD, IRMPD, and EID provide complementary structural information for phosphate-containing metabolites. Overall, CAD provided the most extensive fragmentation for smaller (<600 Da) phosphate-containing metabolites; however, IRMPD generated more extensive fragmentation for larger (>600 Da) phosphate-containing metabolites, particularly for species containing increased numbers of phosphate groups. EID generally provided complementary fragmentation to CAD and showed extensive fragmentation with relatively evenly abundant product ions, regardless of metabolite size. However, EID fragmentation efficiency is lower than those of CAD and IRMPD.  相似文献   

9.
Positive ion mode collision-activated dissociation tandem mass spectrometry (CAD MS/MS) of O-sulfopeptides precludes determination of sulfonated sites due to facile proton-driven loss of the highly labile sulfonate groups. A previously proposed method for localizing peptide and protein O-sulfonation involves derivatization of nonsulfonated tyrosines followed by positive ion CAD MS/MS of the corresponding modified sulfopeptides for diagnostic sulfonate loss. This indirect method relies upon specific and complete derivatization of nonsulfonated tyrosines. Alternative MS/MS activation methods, including positive ion metastable atom-activated dissociation (MAD) and metal-assisted electron transfer dissociation (ETD) or electron capture dissociation (ECD) provide varying degrees of sulfonate retention. Sulfonate retention has also been reported following negative ion MAD and electron detachment dissociation (EDD), which also operates in negative ion mode in which sulfonate groups are less labile than in positive ion mode. However, an MS/MS activation technique that can effectively preserve sulfonate groups while providing extensive backbone fragmentation (translating to sequence information, including sulfonated sites) with little to no noninformative small molecule neutral loss has not previously been realized. Here, we report that negative ion CAD, EDD, and negative ETD (NETD) result in sulfonate retention mainly at higher charge states with varying degrees of fragmentation efficiency and sequence coverage. Similar to previous observations from CAD of sulfonated glycosaminoglycan anions, higher charge states translate to a higher probability of deprotonation at the sulfonate groups thus yielding charge-localized fragmentation without loss of the sulfonate groups. However, consequently, higher sulfonate retention comes at the price of lower sequence coverage in negative ion CAD. Fragmentation efficiency/sequence coverage averaged 19/6% and 33/20% in EDD and NETD, respectively, both of which are only applicable to multiply-charged anions. In contrast, the recently introduced negative ion ECD showed an average fragmentation efficiency of 69% and an average sequence coverage of 82% with complete sulfonate retention from singly- and doubly-deprotonated sulfopeptide anions.  相似文献   

10.
Infrared multiphoton dissociation (IRMPD) in a quadrupole ion trap coupled to high-performance liquid chromatography allows the selective dissociation of phosphorylated peptides in mixtures following chromatographic separation. This method is shown to be effective for differentiation of phosphorylated peptides from unphosphorylated ones; only the abundances of the phosphorylated species are appreciably decreased following exposure to 125 ms of 10.6-microm radiation. This LC-IRMPD-MS strategy is demonstrated for a mock mixture of peptides and a tryptic digest of alphaS1-casein. The ability of this technique to differentiate peptides based on phosphorylation state is unaffected by whether the peptides are protonated or sodium-cationized.  相似文献   

11.
Fu Q  Li L 《Analytical chemistry》2005,77(23):7783-7795
A stable-isotope dimethyl labeling strategy was previously shown to be a useful tool for quantitative proteomics. More recently, N-terminal dimethyl labeling was also reported for peptide sequencing in combination with database searching. Here, we extend these previous studies by incorporating N-terminal isotopic dimethylation for de novo sequencing of neuropeptides directly from tissue extract without any genomic information. We demonstrated several new sequencing applications of this method in addition to the identification of the N-terminal residue using the enhanced a(1) ion. The isotopic labeling also provides easier and more confident de novo sequencing of peptides by comparing similar MS/MS fragmentation patterns of the isotopically labeled peptide pairs. The current study on neuropeptides shows several distinct fragmentation patterns after N-terminal dimethylation which have not been reported previously. The y((n-1)) ion is enhanced in multiply charged peptides and is weak or missing in singly charged peptides. The MS/MS spectra of singly charged peptides are simplified due to the enhanced N-terminal fragments and suppressed internal fragments. The neutral loss of dimethylamine is also observed. The mechanisms for the above fragmentations are proposed. Finally, the structures of the immonium ion and related ions of N(alpha), N(epsilon)-tetramethylated lysine and N(epsilon)-dimethylated lysine are explored.  相似文献   

12.
We have mounted a permanent on-axis dispenser cathode electron source inside the magnet bore of a 9.4-T Fourier transform ion cyclotron resonance mass spectrometer. This configuration allows electron capture dissociation (ECD) to be performed reliably on a millisecond time scale. We have also implemented an off-axis laser geometry that enables simultaneous access to ECD and infrared multiphoton dissociation (IRMPD). Optimum performance of both fragmentation techniques is maintained. The analytical utility of performing either ECD or IRMPD on a given precursor ion population is demonstrated by structural characterization of several posttranslationally modified peptides: IRMPD of phosphorylated peptides results in few backbone (b- and y-type) cleavages, and product ion spectra are dominated by neutral loss of H3PO4. In contrast, ECD provides significantly more backbone (c- and z*-type) cleavages without loss of H3PO4. For N-glycosylated tryptic peptides, IRMPD causes extensive cleavage of the glycosidic bonds, providing structural information about the glycans. ECD cleaves all backbone bonds (except the N-terminal side of proline) in a 3-kDa glycopeptide with no saccharide loss. However, only a charge-reduced radical species and some side chain losses are observed following ECD of a 5-kDa glycopeptide from the same protein. An MS3 experiment involving IR laser irradiation of the charge-reduced species formed by electron capture results in extensive dissociation into c- and z-type fragment ions. Mass-selective external ion accumulation is essential for the structural characterization of these low-abundance (modified) peptides.  相似文献   

13.
We have developed a new IR chromogenic cross-linker (IRCX) to aid in rapidly distinguishing cross-linked peptides from unmodified species in complex mixtures. By incorporating a phosphate functional group into the cross-linker, one can take advantage of its unique IR absorption properties, affording selective infrared multiphoton dissociation (IRMPD) of the cross-linked peptides. In a mock mixture of unmodified peptides and IRCX-cross-linked peptides (intramolecularly and intermolecularly cross-linked), only the peptides containing the IRCX modification were shown to dissociate upon exposure to 50 ms of 10.6-microm radiation. LC-IRMPD-MS proved to be an effective method to distinguish the cross-linked peptides in a tryptic digest of IRCX-cross-linked ubiquitin. A total of four intermolecular cross-links and two dead-end modifications were identified using IRCX and LC-IRMPD-MS. IRMPD of these cross-linked peptides resulted in secondary dissociation of all primary fragment ions containing the chromophore, producing a series of unmodified b- or y-type ions that allowed the cross-linked peptides to be sequenced without the need for collision-induced dissociation.  相似文献   

14.
Recent advances in phosphopeptide enrichment prior to mass spectrometric analysis show genuine promise for characterization of phosphoproteomes. Tandem mass spectrometry of phosphopeptide ions, using collision-activated dissociation (CAD), often produces product ions dominated by the neutral loss of phosphoric acid. Here we describe a novel method, termed Pseudo MS(n), for phosphopeptide ion dissociation in quadrupole ion trap mass spectrometers. The method induces collisional activation of product ions, those resulting from neutral loss(es) of phosphoric acid, following activation of the precursor ion. Thus, the principal neutral loss product ions are converted into a variety of structurally informative species. Since product ions from both the original precursor activation and all subsequent neutral loss product activations are simultaneously stored, the method generates a "composite" spectrum containing fragments derived from multiple precursors. In comparison to analysis by conventional MS/MS (CAD), Pseudo MS(n) shows improved phosphopeptide ion dissociation for 7 out of 10 synthetic phosphopeptides, as judged by an automated search algorithm (TurboSEQUEST). A similar overall improvement was observed upon application of Pseudo MS(n) to peptides generated by enzymatic digestion of a single phosphoprotein. Finally, when applied to a complex phosphopeptide mixture, several phosphopeptides mis-assigned by TurboSEQUEST under the conventional CAD approach were successfully identified after analysis by Pseudo MS(n).  相似文献   

15.
For proteins of < 20 kDa, this new radical site dissociation method cleaves different and many more backbone bonds than the conventional MS/MS methods (e.g., collisionally activated dissociation, CAD) that add energy directly to the even-electron ions. A minimum kinetic energy difference between the electron and ion maximizes capture; a 1 eV difference reduces capture by 10(3). Thus, in an FTMS ion cell with added electron trapping electrodes, capture appears to be achieved best at the boundary between the potential wells that trap the electrons and ions, now providing 80 +/- 15% precursor ion conversion efficiency. Capture cross section is dependent on the ionic charge squared (z2), minimizing the secondary dissociation of lower charge fragment ions. Electron capture is postulated to occur initially at a protonated site to release an energetic (approximately 6 eV) H. atom that is captured at a high-affinity site such as -S-S- or backbone amide to cause nonergodic (before energy randomization) dissociation. Cleavages between every pair of amino acids in mellitin (2.8 kDa) and ubiquitin (8.6 kDa) are represented in their ECD and CAD spectra, providing complete data for their de novo sequencing. Because posttranslational modifications such as carboxylation, glycosylation, and sulfation are less easily lost in ECD than in CAD, ECD assignments of their sequence positions are far more specific.  相似文献   

16.
The infrared multiple photon dissociation (IRMPD) spectra of O-glycosylated peptides in the gas phase were studied in the IR scanning range of 5.7-9.5 μm. Fragmentation of protonated and sodiated O-glycopeptides was investigated using electrospray ionization (ESI) Fourier-transform ion cyclotron resonance (FTICR) mass spectrometry (MS) with a free electron laser (FEL). FEL is used in the IRMPD technique as a tunable IR light source. In the IRMPD spectroscopic analysis of the protonated O-glycopeptide, fragment ions of the b/y and B/Y types were observed in the range of 5.7-9.5 μm, corresponding to the cleavage of the backbone in the parent amino acid sequence and glycosyl bonds, whereas the spectra of the sodiated glycopeptide showed major peaks of photoproducts of the B/Y type in the range of 8.4-9.5 μm. The IRMPD spectra of the O-glycopeptides were compared with simulated IR spectra for the structures obtained from the molecular dynamics.  相似文献   

17.
Mass spectra produced by nozzle-skimmer dissociation (NSD) have been little used in the past for structural characterization. NSD cannot be used on mass-separated ions (MS/MS), and for electrosprayed protein ions, previous NSD spectra showed backbone cleavages similar to those from energetic methods such as collisionally activated dissociation (CAD) or infrared multiphoton dissociation (IRMPD). However, our experimental configuration with Fourier transform (FT) MS makes possible three consecutive steps of NSD ion activation: thermal in the entrance capillary and collisional in both the nozzle-skimmer (N-S) region and the region after the skimmer before the quadrupole entrance lens (S-Q). In the high-pressure N-S region of adjustable path length, ions undergo high-frequency, low-energy collisions to rupture weak noncovalent or covalent bonds, with these "denatured" products then subjected to high-energy collisions in the low-pressure S-Q region to cleave strong backbone bonds. These NSD spectra, plus those from variable capillary thermal activation, of 8+ to 11+ ubiquitin ions electrosprayed from denatured solution show backbone cleavages between 74 of 75 amino acid pairs, vs 66 for CAD and 50 for IRMPD in the FTMS cell. Thermal activation by the inlet capillary of the newly desolvated 6+, 7+ ubiquitin ions from electrospraying the native conformer increases the NSD yield from 8% at 56 degrees C to 96% at 76 degrees C, but with little change in product branching ratios; this capillary heating has no effect on CAD or IRMPD of these ions collected in the FTMS cell. Ion desolvation with its concomitant H-bond strengthening appears to produce a transiently stable conformer whose formation can be prevented by capillary heating. The far more complex and stable noncovalent tertiary structures of large protein ions in the gas phase have made MS/MS difficult; initial inhibition of tertiary structure formation with immediate NSD ("prefolding dissociation") appears promising for the top down characterization of a 200-kDa protein.  相似文献   

18.
The emergence of proteomics has placed great interest in the understanding of the mechanisms of MS/MS fragmentation of peptides under low-energy collision-induced dissociation. In this work, we describe the presence of anomalous fragments, which correspond to neutral loss elimination of internal amino acids from ions of the b series in quadrupole ion trap MS/MS spectra from naturally occurring peptides. Internal amino acid elimination occurred preferentially with aliphatic amino acids. The phenomenon was more apparent when doubly charged precursors were fragmented and was inhibited when peptides were N-acetylated at the N-terminus. Fragmentation of isomeric peptides where some internal amino acids were relocated in N-terminal position produced MSn spectra indistinguishable from those of the original peptides, indicating that some b ions underwent a structural rearrangement process. Formation of anomalous fragments required a minimum activation time. Our data are consistent with a nucleophile attack of the N-terminal nitrogen over the electrophilic carbonyl carbon at one peptide bond, forming a cyclic b ion intermediate that, by reopening at preferential sites, exposes internal amino acids to the C-terminal side.  相似文献   

19.
Ion-ion reactions between a variety of peptide cations (doubly and triply charged) and SO2 anions have been studied in a 3-D quadrupole ion trap, resulting in proton and electron transfer. Electron transfer dissociation (ETD) gives many c- and z-type fragments, resulting in extensive sequence coverage in the case of triply protonated peptides with SO2*-. For triply charged neurotensin, in which a direct comparison can be made between 3-D and linear ion trap results, abundances of ETD fragments relative to one another appear to be similar. Reactions of doubly protonated peptides with SO2*- give much less structural information from ETD than triply protonated peptides. Collision-induced dissociation (CID) of singly charged ions formed in reactions with SO2*- shows a combination of proton and electron transfer products. CID of the singly charged species gives more structural information than ETD of the doubly protonated peptide, but not as much information as ETD of the triply protonated peptide.  相似文献   

20.
The goal of many MS/MS de novo sequencing strategies is to generate a single product ion series that can be used to determine the precursor ion sequence. Most methods fall short of achieving such simplified spectra, and the presence of additional ion series impede peptide identification. The present study aims to solve the problem of confounding ion series by enhancing the formation of "golden" sets of a, b, and c ions for sequencing. Taking advantage of the characteristic mass differences between the golden ions allows N-terminal fragments to be readily identified while other ion series are excluded. By combining the use of Lys-N, an alternate protease, to produce peptides with lysine residues at each N-terminus with subsequent imidazolinylation of the ε-amino group of each lysine, peptides with highly basic sites localized at each N-terminus are generated. Subsequent MS/MS analysis by using 193 nm ultraviolet photodissociation (UVPD) results in enhanced formation of the diagnostic golden pairs and golden triplets that are ideal for de novo sequencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号