首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
厌氧消化处理餐厨垃圾的工艺研究   总被引:18,自引:0,他引:18  
在分析餐厨垃圾的性质和现有处理技术基础上,着重分析了湿式厌氧发酵工艺处理餐厨垃圾的适应性和特点,并根据餐厨垃圾的组成特性和湿式厌氧发酵反应的要求.研究了适用于餐厨垃圾的湿式厌氧发酵工艺,该工艺通过对原料处理罐(备料罐)和发酵反应器的精心设计,保证了发酵反应的顺利进行和发酵后腐熟质的质量,实验室试验表明产气率可达0.520m^3/kg.VS。  相似文献   

2.
利用高效液化酶(Liquozyme)和糖化酶(AMG)对餐厨废弃物进行液化糖化,优化了酶组成、加酶量、pH、操作温度、操作时间、酵母接种量等参数,建立了由餐厨废弃物炼制燃料乙醇的最佳工艺。结果表明:通过液化酶和糖化酶复配,可降低原料粘度、提高传质效率,使淀粉类多糖快速转化为可发酵性单糖;液化酶最优作用条件为85℃,pH值5.1~5.2,加酶量为0.75 U/g(干基),液化时间为40 min;糖化酶最优作用条件为45℃,pH值5.0,加酶量0.5 U/g(干基),糖化时间为30 min;最佳的发酵条件是酵母接种量3 g/L,发酵时间20 h,所得乙醇浓度为54 g/L,相当于0.438 g/g(乙醇/葡萄糖),达到理论产量的86%。  相似文献   

3.
餐厨垃圾厌氧消化工艺研究   总被引:2,自引:0,他引:2  
为了提高餐厨垃圾的厌氧消化效率,对餐厨垃圾序批式厌氧消化(BT)、半连续厌氧消化(SCT)、固液两相厌氧消化(SLT)进行了比选研究。研究结果表明,SLT生产系统有效提高了厌氧消化效率,单位沼气产量与甲烷含量也都显著提高,SLT,SCT及BT的单位VS最大沼气日产量分别为430,270 m L和150 m L,最高甲烷含量分别为68%,57%和50%;SLT的产酸效率及有机酸利用率均显著提高,有机负荷率较SCT提高50%,能够达到9 g/(L·d)。餐厨垃圾的SLT工艺有机负荷及消化效率较SCT及BT工艺均有大幅提高。  相似文献   

4.
餐厨垃圾厌氧消化的工艺比选研究   总被引:3,自引:0,他引:3  
研究了餐厨垃圾两段法厌氧消化工艺与整体一段法的性能差异。两种工艺的累积产气量几乎不存在差异,产气率分别达到135.66L/kgVS和134.56L/kgVS。两种工艺相比,一段法的产气周期短,但是产气的稳定性不佳,在整个消化过程中产气量波动明显,规律性不明显。研究认为:对于餐厨垃圾的厌氧消化.整体一段法的产气周期短,工艺运行简单,应用到工业化生产上,一段法具有明显优势。  相似文献   

5.
厌氧消化是餐厨垃圾产业化处理的主流方式,厌氧系统单位体积有机负荷和单位体积产气率是评价厌氧系统产业化能力的重要指标.实验研究了搅拌频率、物料投加方式和不同单位体积有机负荷情况下厌氧系统的产气情况.结果表明,在选择连续式投加物料情况下,维持60min/3hrs搅拌频率和2.8kg TVS/(m3.d)单位体积有机负荷水平,全混合厌氧消化系统可以获得稳定的高产气率,达到(2.69±0.03)m3/(m3·d),甲烷体积分数(65.2±1.3)%.  相似文献   

6.
程蓓 《节能技术》2012,30(5):478-480
综述餐厨废弃物的处理现状,介绍了利用餐厨垃圾发电的几种技术方法及应用情况:如餐厨废弃物焚烧发电、产生沼气发电、利用柴油机发电以及其他形式发电等;并分析比较这些方法的特点。餐厨废弃物的资源化综合利用是目前最佳的利用方式,为新能源产业发展开辟了一条新路。  相似文献   

7.
研究了餐厨果蔬生物质垃圾以一定比例混合后,控制不同温度和不同进料负荷条件的厌氧消化反应,观察酸化效果,达到定向产乙醇和乙酸的目的。结果表明,餐厨与果蔬垃圾的配比以可挥发性固体质量4∶1(VS),F/M=4∶1(VS),反应温度为45℃,初始负荷以总固体TS质量浓度为60 g/L时的定向酸化性能最佳,体系的溶解态化学需氧量SCOD最终达到1 100 mg/(g·L),可挥发性有机物浓度VFA达到320 mg/(g·L),相比反应开始时分别增加了50%和150%。厌氧水解和酸化过程基本同步,乙醇和乙酸在所测定的中间产物中比例最大,分别达到56%和42%,并且其产生过程持续进行。35℃条件适合乙醇转化为乙酸,55℃条件会快速进行乙醇型发酵。  相似文献   

8.
以产氢量为主要考察指标,通过响应面Box-Behnken模型优化大叶黄杨废弃物光合生物制氢的工艺参数,对其主要影响因素之间的关系进行研究。结果表明:温度对大叶黄杨废弃物光合生物制氢工艺的影响最大;光照强度与初始pH值、温度等的交互作用均对产氢量的影响比较显著;最佳产氢工艺条件为温度28.78℃、初始pH值7.00、光照强度3 067.0 lx,此时拟合产氢量为71.81 mL/g,实际产氢量为70.15 mL/g;拟合值和实际值的相对误差为2.31%,表明该数值模型具有较好的拟合性。  相似文献   

9.
借助于Design Expert软件,通过Plackett-Burman试验设计法筛选出对酶水解餐厨垃圾影响显著的因素为糖化酶、温度及初始p H,再根据响应面设计法中的Box-Benhnken中心组合设计原理,采用三因素三水平设计方法,以生成还原糖的产量为响应值,对酶水解餐厨垃圾的条件进行优化。结果表明:当糖化酶的量为220U/g,水解温度为55.8℃,初始p H为5.24时,还原糖的产量为68.02 g/L,与理论值基本一致。  相似文献   

10.
我国餐厨垃圾产量日益增加,其资源化处理越来越受到人们重视。两相厌氧消化工艺中水解酸化阶段和产甲烷阶段相对独立,具有更多的优势。本文介绍了两相厌氧消化工艺的发展过程和餐厨垃圾的特性,研究了国内外餐厨垃圾两相厌氧消化制沼气技术的进展情况,以期为我国餐厨垃圾的快速高效处理提供参考。  相似文献   

11.
微量金属元素对餐厨垃圾与牛粪联合厌氧消化效率影响   总被引:1,自引:0,他引:1  
为了提高餐厨垃圾(FW)与牛粪(CM)联合厌氧消化效率,试验通过向批式厌氧消化体系中加入微量金属元素(Fe,Co,Ni),研究其对FW与CM联合厌氧消化性能的影响。结果表明:添加微量金属元素有利于维持系统稳定,提高产气效率。T1~T5的沼气总产量均达到4 000mL以上,较不添加微量元素处理(CK)增加55%左右,平均甲烷含量均在60%以上,较不添加微量元素处理(CK)增加20%左右。T1~T5的有机酸(VFAs)及氨氮含量变化较平稳,未出现酸累积及氨抑制现象,而CK的VFAs及氨氮含量呈现不断上升的趋势。加入微量金属元素后辅酶F420的吸光值开始上升,15 d以后吸光值稳定在0.55~0.65,而CK的吸光值呈现下降趋势。因此,添加微量金属元素是提高FW与CM联合厌氧消化效率的有效途径。  相似文献   

12.
厨余和牛粪混合厌氧发酵产气性能试验研究   总被引:4,自引:1,他引:3  
在中温(35℃)条件下,通过批式厌氧发酵对牛粪、厨余以及厨余和牛粪的混合物的产气性能进行了对比研究.结果表明,单独消化时,厨余的甲烷产量(以VS为基准)为362.2ml/g,生物转化效率为60.2%,明显高于牛粪的144.3 ml.g和25.4%;混合消化时,由于发酵物营养平衡和C/N比得到改善,缓冲能力增强,因此混合消化效果要好于两者单独消化.在厨余/牛粪(质量比,下同)为1:1时,混合消化的协同作用最显著,对甲烷产量和生物转化效率的贡献率分别为17.3%和7.8%,消化时间缩短了9 d,说明混合消化是提高厌氧消化效率的有效途径.  相似文献   

13.
The biogas production potential of different mixtures of cow manure (CM) and three-phase olive mill solid waste (3POMSW) at 37°C was evaluated. Results showed that 3POMSW produced more methane yield than CM. In the anaerobic co-digestion (AcoD) methane yield increased with increasing of 3POMSW content, the maximum methane yield was observed at 3POMSW:CM ratio of 3:1. Addition of an enzyme mixture (Celluclast, Pulpzyme HC, Sherazyme, Novozym 342, and Resinase A 2X) to the 1:1 mixture increased the quantity and quality of biogas production and reduced the retention time required to achieve a high rate of biodegradation. Therefore, AcoD with enzymes was an effective way to improve the methane yield of 3POMSW and CM.  相似文献   

14.
畜禽粪便、污泥、农村垃圾中温联合厌氧消化技术研究   总被引:1,自引:0,他引:1  
利用中温厌氧消化工艺,在CSTR反应器内对畜禽粪便、污水处理厂污泥及农村生活垃圾3种原料进行联合厌氧消化试验研究,重点探讨了3种原料的配比问题。结果表明,在温度为37℃,停留时间为20 d,粪便、污泥、垃圾TS之比为6∶3∶1,容积负荷为3.61 g/(L.d)的条件下,系统稳定性和处理效果都比较理想,单位VS的产气率为0.36~0.39 L/g,VS去除率为45.1%~49.4%。  相似文献   

15.
Food waste (FW), primary sludge (PS) and waste activated sludge (WAS) were characterized and found to be complementary in the concentrations of carbohydrates, total Kjeldahl nitrogen (TKN), PO4–P and some metal for biological hydrogen production. Moreover, FW was found to have low pH buffering capacity while the values for PS and WAS were relatively higher. An anaerobic toxicity analysis (ATA) derived from a methanogenic ATA protocol showed that these waste materials had no toxicity to hydrogen production. Adding phosphate buffer to the FW significantly improved hydrogen production while initial pH was 7.0. Co-digestion of FW and sewage sludge was studied using a batch respirometric cultivation system. All combinations of the feedstocks (FW+PS, FW+WAS and FW+PS+WAS) showed enhanced hydrogen production potential as compared with the individual wastes. A mixing ratio of 1:1 was found to be the best among the ratios tested for all three co-digestion groups. A hydrogen yield of 112 mL/g volatile solid (VS) added was obtained from a combination of FW, PS and WAS. This yield was equivalent to 250 mL/g VS added if only FW contributed to hydrogen production. The reason for the enhancement of hydrogen production was postulated to be multifold in which the increase in buffer capacity in the co-digestion mixture was verified.  相似文献   

16.
在实验室条件下,研究了铜离子浓度为100600μg/g时对猪粪厌氧消化性能的影响。结果表明:铜离子浓度为100~300μg/g时可提高甲烷产量,浓度为400~600μg/g时,则明显抑制甲烷产量;整个过程中,系统的pH值一直维持在6.5600μg/g时对猪粪厌氧消化性能的影响。结果表明:铜离子浓度为100~300μg/g时可提高甲烷产量,浓度为400~600μg/g时,则明显抑制甲烷产量;整个过程中,系统的pH值一直维持在6.57.2,无明显酸化;当铜离子浓度为300μg/g时,COD去除率最大,达到68.23%。铜离子浓度对TS,VS去除率影响不明显,TS去除率为30%7.2,无明显酸化;当铜离子浓度为300μg/g时,COD去除率最大,达到68.23%。铜离子浓度对TS,VS去除率影响不明显,TS去除率为30%35%,VS去除率为55%35%,VS去除率为55%60%。不同重金属浓度的COD在前15 d内均达到较高值,这有利于反应高效进行,而氨氮(NH4+-N)一直处于升高状态,对反应中的产甲烷微生物造成抑制作用,最终导致消化系统氨中毒,使Cu400,Cu500,Cu600 3个处理的发酵罐产气提前结束。  相似文献   

17.
试验研究了不同负荷下不同混合比例的鸡粪与NaOH预处理麦秸的厌氧发酵产气性能和协同作用效果。以鸡粪和2%NaOH预处理后的麦秸作为发酵原料,研究了混合物料在3种负荷和9种混合比例条件下的厌氧发酵产气情况。结果表明:在3种负荷(50,65,80 g/L)中,均是鸡粪和麦秸比例为1∶2时产气效果最佳,其累计产气量分别达到32 000,43 030 mL和50 370 mL;其TS产气率分别达到328.2,356.9,352.8 mL/g,比纯鸡粪相应负荷分别提高了27%,29%,23%。不同比例下,3种负荷中,均是65 g/L时产气效果最好,鸡粪与麦秸的协同作用使累计产气量提高了7%~17.7%。  相似文献   

18.
Anaerobic co-digestion of food waste and sewage sludge for hydrogen production was performed in serum bottles under various volatile solids (VS) concentrations (0.5–5.0%) and mixing ratios of two substrates (0:100–100:0, VS basis). Through response surface methodology, empirical equations for hydrogen evolution were obtained. The specific hydrogen production potential of food waste was higher than that of sewage sludge. However, hydrogen production potential increased as sewage sludge composition increased up to 13–19% at all the VS concentrations. The maximum specific hydrogen production potential of 122.9 ml/g carbohydrate-COD was found at the waste composition of 87:13 (food waste:sewage sludge) and the VS concentration of 3.0%. The relationship between carbohydrate concentration, protein concentration, and hydrogen production potential indicated that enriched protein by adding sewage sludge might enhance hydrogen production potential. The maximum specific hydrogen production rate was 111.2 ml H2/g VSS/h. Food waste and sewage sludge were, therefore, considered as a suitable main substrate and a useful auxiliary substrate, respectively, for hydrogen production. The metabolic results indicated that the fermentation of organic matters was successfully achieved and the characteristics of the heat-treated seed sludge were similar to those of anaerobic spore-forming bacteria, Clostridium sp.  相似文献   

19.
Cassava pulp is a major by-product produced in a cassava starch factory, containing 50–60% of starch (dry basis). Therefore, in this study we are considering its potential as a raw material substrate for the production of methane. To ensure sufficient amounts of nutrients for the anaerobic digestion process, the potential of co-digestion of cassava pulp (CP) with pig manure (PM) was further examined. The effect of the co-substrate mixture ratio was carried out in a semi-continuously fed stirred tank reactor (CSTR) operated under mesophilic condition (37 °C) and at a constant OLR of 3.5 kg VS m?3 d?1 and a HRT of 15 days. The results showed that co-digestion resulted in higher methane production and reduction of volatile solids (VS) but lower buffering capacity. Compared to the digestion of PM alone, the specific methane yield increased 41% higher when co-digested with CP in concentrations up to 60% of the incoming VS. This was probably due to an increase in available easily degradable carbohydrates as the CP ratio in feedstock increased. The highest methane yield and VS removal of 306 mL g?1 VSadded and 61%, respectively, were achieved with good process stability (VFA:Alkalinity ratio < 0.1) when CP accounted for 60% of the feedstock VS. A further increase of CP of the feedstock led to a decrease in methane yield and solid reductions. This appeared to be caused by an extremely high C:N ratio of the feedstock resulting in a deficiency of ammonium nitrogen for microbial growth and buffering capacity.  相似文献   

20.
Methane yield of seven co-digestion mixture proportions (1:0, 5:1, 3:1, 1:1, 1:3, 1:5, and 0:1) of rice straw and dairy manure was investigated at a total solids (TS) loading of 8%. Methane yield was improved by 50–57% and 9–10% with co-digestion at mixture proportions of 1:1,1:3 and 1:5 compared to mono digestion of rice straw and dairy manure, respectively. The modified Gompertz model accounted well for the kinetic behavior of methane yield with an R2 of 0.99 and Root Mean Square Error of 0.06–1.70. It was observed that the co-digestion caused a reduction in lag phase time and improvement in the maximum methane production rate. The positive synergistic effects are a result of nutrient balance with the co-digestion of dairy manure and rice straw.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号