首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Samarium ions (Sm2+) incorporated into aluminosilicate glasses by a sol-gel process showed persistent spectral hole burning at room temperature. Gels of the system Na2O-Al2O3SiO2 synthesized by the hydrolysis of Si(OC2H5)4, Al(OC4H9)3, CH3 COONa, and SmCl3·6H2O were heated in air at 500°C, then reacted with H2 gas to form Sm2+ ions. Whereas Al3+ ions effectively dispersed the Sm3+ ions in the glass structure, Na+ ions were not effective. The Al2O3-SiO2 glasses proved appropriate for reacting the Sm3+ ions with H2 gas and exhibited the intense photoluminescence of Sm2+ ions. The reaction of Sm3+ ions with H2 in the Al2O2-SiO2 glasses was determined by first-order kinetics, and the activation energy equaled 95 kJ/mol. At 800°C, the maximum photoluminescence of the Sm2+ ions was achieved within 20 min.  相似文献   

2.
The crystallization of Al2O3-rich glasses in the system SiO2-Al2O3 which were prepared by flame-spraying and/or splat-cooling was studied by DTA, electron microscopy, and X-ray diffraction. Over a wide range of compositions, the crystallization temperature ( Tx ) remained near 1000°C, changing smoothly with composition. In all cases crystallization of mullite was detected by X-ray diffraction. In the low-Al2O3 region, coarsening of the microstructure during crystallization was observed by electron microscopy. In the high-Al2O3 region mullite and γ-Al2O3 cocrystallized; this behavior may be interpreted as evidence of a cooperative process of crystallization at the respective Tx 's. The crystallite size of the mullite immediately after rapid crystallization increased continuously with increasing Al2O3 content. In light of the Tx data, the adequacy of the evidence for the proposed metastable miscibility gap in the SiO2-Al2O3 system is questioned.  相似文献   

3.
Differential scanning calorimetry studies of As40SexTe60-x glasses with 0≤x≤60 show a 2-stage crystallization when 5≤x≤35, followed by a double-peaked melting endotherm. The enthalpy of crystallization for the low-temperature species is independent of composition and equals 11.6±0.9 cal/g for x≤25, whereas that for the high-temperature species decreases from 2.2±0.2 cal/g for x = 5 to 1.1±0.3 cal/g for x =15. The total enthalpy of melting also is independent of composition and equals 18.8±1.2 cal/g for x ≤25. No crystallization was observed for xe40. The high-temperature phase has the mono-clinic As2Te3 structure; that of the low-temperature phase was not identified. Annealing experiments for compositions with x = 15 or 20 gave time-temperature transformation maps. A kinetic analysis of the data was inconclusive.  相似文献   

4.
The structure of SiO2-Al2O3 glasses with up to 60 wt% Al2O3 was investigated using the radial distribution function together with the correlation method based on X-ray scattering intensity data. Radial distribution curves are interpreted on the basis of glass-in-glass separation with the constituents of SiO2-rich and Al2O3-rich glasses. The structure of the Al2O3-rich glass has a short-range ordering similar to the crystal structure of mullite. The calculated S- i (S) curve of this model gives good agreement with the observed one.  相似文献   

5.
Relatively large compact glass samples (∼5 mm in diameter) of 65SiO2·20TiO2·15ZrO2 and other binary and ternary compositions were prepared by the alkoxide gel method. Prolonged storage of the gels in water before they were dried reduced the residual carbon content of the resulting glasses considerably. Optimal preparation conditions are given, and the microstructure of the gels and glasses obtained is discussed.  相似文献   

6.
7.
The glass-forming region of the GeSe2–Ga2Se3–PbI2 system was determined and homogeneous glasses were prepared. The maximum dissolvable PbI2 can be up to 50 mol%. The structures of glasses were characterized by Raman spectroscopy. The thermal, optical, and some basic physical properties of the glasses were investigated. The results show that GeSe2–Ga2Se3–PbI2 glasses have a wide region of transmission window (0.7–16 μm) and high refractive index (∼2.5) with the addition of PbI2. The glasses have good glass-forming ability and high glass transition temperatures. Consequently, these novel glasses may be promising candidate materials for infrared optics and nonlinear optical field.  相似文献   

8.
The intensity and spectral distribution of light scattered by K2O-SiO2 glasses (K2O content up to 40 mol%) were measured. The transverse and longitudinal sound-wave velocities and the photoelastic constants were evaluated from the results. The total intensity of the scattering (and therefore the attenuation caused by it) exhibited a minimum at a concentration of ∼25 mol% K2O. For this composition the attenuation is ∼2/2 of that in pure SiO2. This behavior results from the existence of anomalously small concentration fluctuations in the melt of K2O·3SiO2 glass. A qualitative explanation of this result, involving low-temperature immiscibility regions, is presented.  相似文献   

9.
Differences in the Raman spectra of various heat-treated TiO2· SiO2 glasses could be related to their thermal and chemical histories. For instance, while rutile could be detected in batch-prepared glasses heated at 1100°C, only α-cristobalite could be detected in heat-treated devitrified flame-prepared glasses with comparative TiO2-concentrations. Thermal expansion coefficients increased for batch-prepared glasses upon heat treatment due to exsolution of rutile from the glasses. Earlier work had noted similar behavior at lower temperatures due to exsolution of anatase.  相似文献   

10.
The photochemical transformation mechanism of defects in germanosilicate and silica glasses under ultraviolet (UV) laser irradiation has been investigated based on the changes in Raman spectra before and after irradiation. Two types of silica glasses, fused silica (type I) and dry synthetic silica (type IV), and germanosilicate optical fiber preforms were irradiated by intense UV photons from excimer lasers. Spectral changes in optical absorption and Raman spectra were examined to clarify a correlation between the microscopic defect formation and the macroscopic structural changes causing a photorefractive effect. Successive generation of E' centers through divalent centers is closely correlated with changes in Raman spectra, indicating that large structural changes in the glass network involved in this process would be the origin of photon-induced densification of the glasses. In addition, it has been proposed that the successive generation of E' centers is mediated by transient divalent centers converted from relaxed cation homobondings.  相似文献   

11.
The density fluctuations contributing to light scattering in a glass are governed by the flctive temperature of the glass and the equilibrium compressibility of the melt. Using ultrasonic velocity data for K2O–SiO2 melts, these compressibilities were evaluated, and the magnitude of the density fluctuations were calculated. In this system, the mean–square amplitude of the fluctuations reaches a minimum value (about half that of pure SiO2) for a composition of ∼20 mol% K2O. By extrapolating the equilibrium compressibilities to zero K2O content, the density fluctuations can be calculated for pure SiO2 glass; this calculation agrees well with the result obtained from light–scattering measurements.  相似文献   

12.
Environmentally enhanced crack growth data for 33% Na2O-67% SiO2 and 33% Li2O-67% SiO2 (mol%) were obtained. Corrosion data for the same glasses as determined by infrared reflection spectroscopy and atomic absorption spectroscopy were also measured. It was determined that, of the tested environments, those and only those environments which caused surface corrosion also enhanced crack growth. Crack growth curves were more complicated for these materials than for fused silica. Water-dominated regions occurred even in environments which are known to enhance crack growth.  相似文献   

13.
SiO2, Al2O3, and 3Al2O3.2SiO2 powders were synthesized by combustion of SiCl4 or/and AlCl3 using a counterflow diffusion flame. The SiO2 and Al2O3 powders produced under various operation conditions were all amorphous and the particles were in the form of agglomerates of small particles (mostly 20 to 30 nm in diameter). The 3Al2O3.2SiO2 powder produced with a low-temperature flame was also amorphous and had a similar morphology. However, those produced with high-temperature flames had poorly crystallized mullite and spinel structure, and the particles, in addition to agglomerates of small particles (20 to 30 nm in diameter), contained larger, spherical particles 150 to 130 nm in diameter). Laser light scattering and extinction measurements of the particle size and number density distributions in the flame suggested that rapid fusion leading to the formation of the larger, spherical particles occurred in a specific region of the flame.  相似文献   

14.
A series of La2O3–HfO2–SiO2 glasses, approximately along the join 0.73SiO2–0.27( x HfO2–(1− x )La2O3), 0< x <0.3), was prepared using containerless processing techniques (aerodynamic levitation combined with laser heating in oxygen). The enthalpy of formation and enthalpy of vitrification at 25°C were obtained from drop solution calorimetry of these glasses and appropriate crystalline compounds in a molten lead borate (2PbO–B2O3) solvent at 702°C. The enthalpy of formation from crystalline oxides was exothermic and became less exothermic with increasing HfO2 content. Heat contents were measured by transposed temperature drop calorimetry and depended linearly on the HfO2 content. Differential scanning calorimetry showed that both the onset glass transition and the onset crystallization temperature of these glasses increased with increasing HfO2 content. Upon slow cooling in air, the glasses crystallized to a mixture of baddeleyite, cristobalite, lanthanum disilicate, and hafnon.  相似文献   

15.
Interfacial and powder reactions between CaTiO3 and 90PbO–10B2O3 and 75PbO–25SiO2 binary glasses were studied. The reaction has been analyzed as the effect of B2O3 and SiO2 additions on the interaction between CaTiO3 and PbO, and discussed from thermodynamic and kinetic points of view. For a fixed CaTiO3/PbO ratio2 the product perovskite phase became enriched with lead as the amount of additives increased, which is more pronounced with B2O3 addition. The reaction of CaTiO3 with the lead–boron glass was controlled by a dissolution-precipitation mechanism, and that with the lead-silica glass by a diffusion mechanism.  相似文献   

16.
Ceramic photonic crystals with diamond structure were fabricated using stereolithography and successive sintering. The green body of an epoxy resin incorporating 10 vol% TiO2–SiO2 was formed by stereolithography and then heated in air at 1100°–1400°C for 2 h. The sintered products maintained the diamond structure with a linear shrinkage ratio of about 57% and a porosity of 38%. The ceramic photonic crystal with eight unit cells showed a photonic band gap at the center frequency of 23.5 GHz. This fabrication method of three-dimensional (3D) ceramic photonic crystals is applicable to other 3D structural ceramics and does not require any molding techniques.  相似文献   

17.
18.
The internal friction of R2O·Al2O3·6SiO2 glasses was measured from-180° to 700°C at 0.4 Hz. Glasses containing Li2O or Na2O exhibited only the one internal friction peak characteristic of the stress-induced movement of the alkali ions. Substitution of a second alkali resulted in two significant changes in the internal friction: (1) a rapid reduction in the magnitude of the original alkali peak and (2) the appearance of a new internal friction peak whose magnitude was especially sensitive to the concentration of the second alkali. Each combination of two alkali ions resulted in a new peak, with peaks being observed for the combinations Li-Na, Na-K, and Li-K. A mechanical damping spectrum is predicted for aluminosilicate glasses containing more than two alkali ions.  相似文献   

19.
Nucleation and crystal growth rates and properties were studied in a two-stage heat treatment process for Fe2O3-CaO-SiO2 glasses. Glass transition (Tg) and crystallization temperatures (T c ) for the glasses lay between about 612.0° and 710.0°C, and 858.5° and 905.0°C, respectively, and magnetite was the main crystal phase. For a glass of 40Fe2O3. 20CaO·40SiO2 (in wt%) the maximum nucleation rate was (68.6 ± 7) × 106/mm3·s at 700°C, and the maximum crystal growth rate was 9.0 nm/min1/2 at 1000°C. The mean crystal size of the magnetite increased from 30 to 140 nm with variation of nucleation and crystal growth conditions. The glass showed the maxima in saturation magnetization and coercive force, 212.1 × Wb/m2 and 30.8 × 103 A/m, when heat-treated for 4 h at 1000°C and 1050°C, respectively. The variation of the saturation magnetization could be quantitatively interpreted well in terms of the volume fraction of the magnetite, whereas that of the coercive forces could be explained only qualitatively in terms of the particle size of the magnetite. Hysteresis losses showed the maximum value of 1493 W/m3 when heat-treated at 1000°C for 4 h prenucleated at 700°C for 60 min, and increased linearly with increasing heat treatment time under a magnetic field up to 800 × 103 A/m.  相似文献   

20.
We characterized SiO2–TiO2 nano-hybrid particles, prepared using the sol–gel method, using high-resolution transmission microscopy. A few nanometer-ordered TiO2 anatase crystallites could be observed on the monodispersed SiO2 nanoparticle surface. The quantum size effect of the TiO2 anatase crystallites is attributed to the blue shift of the absorption band. The rough surface of the SiO2–TiO2 nano-hybrid particles was derived from the developed growth planes of the TiO2 anatase crystallites, grown from fully hydrolyzed Ti alkoxide that did not react with acetic acid during the crystallization process at 600°C thermal annealing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号