首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sintered carbide is widely used as the material for tools and die moulds, but it is difficult to grind because of its brittleness and hardness. A superabrasive diamond wheel is required for mirror-like grinding of this material. The completion of in-process dressing of a superabrasive wheel makes possible effective precision grinding of sintered carbide. This study proposes a new in-process electrolytic dressing system for this purpose. Using optimum in-process electrolytic dressing, the surface roughness is improved and the grinding force is very low. Optimum in-process electrolytic dressing has proved to be a good method for obtaining efficiency and mirror-like grinding of sintered carbide.  相似文献   

2.
In this study, a new system of optimum in-process electrolytic dressing and a microposition system are developed. This system can carry out optimum in-process dressing of superabrasive wheels, and gives effective control of the unstable dressing current and insulating layer. Therefore, ultraprecision grinding when using an optimum in-process electrolytic dressing system and microposition system is a good method for efficient mirror-like grinding of brittle materials.  相似文献   

3.
微晶玻璃超精密磨削技术研究   总被引:7,自引:3,他引:4  
分析实现微晶玻璃超精密磨削的技术条件和在线电解修整超精密磨削机理,并采用铸铁基金刚石砂轮结合在线电解的磨削方法对微晶玻璃进行了精密磨削,获得Ra为2.308nm的超光滑表面。  相似文献   

4.
Ferrite is widely used as a material for magnetic heads for hard disks, but it is difficult to grind because its high hardness and brittleness. Therefore, a superabrasive diamond wheel is used for precision surface grinding of this material. However, the conventional dressing method cannot be applied to a superabrasive diamond wheel. This study describes a new method for carrying out effective in-process electro-discharge dressing (IEDD) of a superabrasive diamond wheel. Using IEDD, the surface roughness of the Mn-Zn ferrite was improved, and the grinding force was reduced. IEDD is a good method for obtaining efficient surface grinding of ferrite.  相似文献   

5.
Fine ceramics have the properties of high hardness, chemical inertness, high thermal resistance and low electrical conductivity, but, because of high hardness and brittleness, they are very difficult to machine. Therefore, a superabrasive diamond wheel is used for mirror-like grinding of this material. In this study, an in-process electrolytic dressing system for carrying out mirror-like surface grinding was constructed. Using this system the grinding force for fine ceramics was reduced. This work shows that the application of electrolytic dressing is beneficial in obtaining a mirror-like surface when grinding fine ceramics.  相似文献   

6.
Metal-bonded superabrasive diamond grinding wheels have superior qualities such as high bond strength, high stability and high grindability. The major problems encountered are wheel loading and glazing, which impedes the effectiveness of the grinding wheel. Electrolytic in-process dressing (ELID) is an effective method to dress the grinding wheel during grinding. The wear mechanism of metal-bonded grinding wheels dressed using ELID is different form the conventional grinding methods because the bond strength of the wheel-working surface is reduced by electrolysis. The reduction of bond strength reduces the grit-depth-of-cut and hence the surface finish is improved. The oxide layer formed on the surface of the grinding wheel experiences macrofracture at the end of wheel life while machining hard and brittle workpieces. When the wheel wear is dominated by macrofracture, the wheel-working surface is free from loaded chips and worn diamond grits. When the oxide layer is removed from the wheel surface, the electrical conductivity of the grinding wheel increases, and that stimulates electrolytic dressing. The conditions applied to the pulse current influence the amount of layer oxidizing from the grinding wheel surface. Longer pulse ‘on’ time increases the wheel wear. Shorter pulse ‘on’ time can be selected for a courser grit size wheel since that type of wheel needs high grinding efficiency. Equal pulse ‘on’ and ‘off’ time is desired for finer grit size wheels to obtain stable and ultraprecision surface finish.  相似文献   

7.
Single crystal MgO is widely used in material with high temperature resistance, but is difficult to grind because of brittleness and crack generation. Therefore, a diamond wheel with superabrasive surface is required for surface grinding of this material. But the conventional dressing method cannot be applied to the diamond wheel with superabrasive. This study describes a newly proposed method for carrying out effective in-process electro-discharge dressing (IEDD) of a diamond wheel with superabrasive. Using IEDD, the surface roughness of single crystal MgO was improved, the grinding force was very low and crack generation was reduced. IEDD is a good method to obtain efficient grinding and surface grinding of single crystal MgO.  相似文献   

8.
Profile accuracy of components ground with ultra-precision machine tools is primarily dependent on wheel wear. Quantitative analysis of wheel wear is therefore an important aspect for precision grinding with electrolytic in-process dressing (ELID). In this paper, wheel wear is measured from ELID grinding experiments with different dressing and machining parameters. The grinding forces and dressing current characteristics of the experiments are also compared. Based on the results, a benchmark function is defined for wheel wear rate. A relation for identifying insufficient dressing from sufficient dressing for particular machining conditions is also identified. It is found that insufficient dressing produces pitting and/or arcing on the wheel surface, and wheel wear can be linearly correlated to ELID grinding conditions when the wheels are sufficiently dressed.  相似文献   

9.
入引了一种在线电解修整金属基超硬磨料砂办密镜面磨削新地钢结硬质合金进行了精密面磨削,得到了粗糙度为0.003μm~0.011μm的镜面,一次磨削成形。效率高,可取代目前的多级研磨工艺。  相似文献   

10.
电火花加工技术的发展带动了电火花修整超硬磨料砂轮技术,改变了传统砂轮“硬接触”修整方法。近年来,许多学者致力于研究超硬磨料砂轮的电火花修整方法,为提高磨削效率和磨削精度做了大量有意义的研究。基于大量文献的论述与研究,回顾了近三十年来电火花修整超硬磨料砂轮技术发展过程的各种研究内容以及取得的成果,完整地阐述了电火花修整金属基超硬磨料砂轮技术的基本原理。以立方氮化硼(CBN)和金刚石磨料砂轮修整为主要应用,对不同电极、不同放电介质、不同放电参数以及现代工程理论辅助下的建模分析方法等方面做了介绍,分析了现有电火花修整技术发展中存在的问题,探讨了未来发展的方向及趋势。  相似文献   

11.
随着硬脆材料应用领域的扩大以及砂轮电解在线修整技术的发展,超精密磨削技术在近年来得到了飞速发展,其中超精密平面磨削技术的应用最为广泛。本文介绍了国内外超精密平面磨床的关键技术,包括总体结构、砂轮主轴及驱动系统、导轨及驱动系统、温度及热变形控制等。  相似文献   

12.
Electrolytic in-process dressing (ELID) grinding is a new method for achieving ultraprecision surface on hard and brittle materials. In ELID grinding, pulsed direct current voltage is applied on the metal-bonded diamond wheels to ensure constant protrusion of sharp cutting grits throughout the grinding cycle. The peak dressing voltage is kept constant irrespective of the wheel sharpness in conventional ELID grinding, which may lead to overdressing of the grinding wheel. Grinding force ratio (which is also known as K value) is an indicator for the grit sharpness. In this paper, a new approach of wheel dressing has been proposed where the peak dressing voltage is varied according to the change in the K value during grinding. A Kistler three-component dynamometer has been used to monitor the grinding force ratio in real time for this purpose. The methodology to implement the new “dressing-on-demand” concept has been discussed thoroughly in this paper. The experimental comparison with the conventional ELID grinding has also been carried out to prove the advantages of the proposed system.  相似文献   

13.
采用电火花在位修形技术,对弧形金属基超硬磨料砂轮进行了精密成形修形实验,结果表明:与传统"对磨法"相比,修形精度和效率上都有大幅度提高:当放电间隙为55 μm,放电电流为15 A,占空比为20%,砂轮转速为1 200 r/min时,获得轮廓偏差PV值为4.58 μm的高精度砂轮.修形精度提高12.09%,修形效率提高3...  相似文献   

14.
大尺寸光学玻璃元件主要采用细磨粒金刚石砂轮进行精密/超精密磨削加工,但存在砂轮修整频繁、工件表面面形精度难以保证、加工效率低等缺点。采用大磨粒金刚石砂轮进行加工则具有磨削比大、工件面形精度高等优点,然而高效精密的修整是其实现精密磨削的关键技术。采用Cr12钢对电镀金刚石砂轮(磨粒粒径151 μm)进行粗修整,借助修整区域聚集的热量加快金刚石的磨损,可使砂轮的回转误差快速降至10 μm以内。结合在线电解修锐技术,采用杯形金刚石修整滚轮对粗修整后的电镀砂轮进行精修整,砂轮的回转误差可达6 μm以内,轴向梯度误差由6 μm降至2.5 μm。通过对修整前后的金刚石砂轮表面磨损形貌成像及其拉曼光谱曲线分析了修整的机理。对应于不同的砂轮修整阶段进行熔融石英光学玻璃磨削试验,结果表明,砂轮回转误差较大时,工件材料表面以脆性断裂去除为主;随着砂轮回转误差和轴向梯度误差的减小,工件表面材料以塑性去除为主,磨削表面粗糙度为Ra19.6 nm,亚表层损伤深度低至2 μm。可见,经过精密修整的大磨粒电镀金刚石砂轮可以实现对光学玻璃的精密磨削。  相似文献   

15.
Ceramics, carbide, and ferrite are widely used due to their significant mechanical properties such as light weight, chemical stability, super wear resistance, and electronics. Despite these characteristics, this material is not widely used for its difficulty in machining material. Therefore, the method of using a metal bonded wheel was proposed. However, a metal bonded wheel is difficult to dress. Recently, a new technology is being developed for In-Process Electrolytic Dressing to solve this problem. This technology provides dressing for metal-bonded wheels during the lapping process for in-process lapping of protruding abrasive from super-abrasive wheels. This method requires a wheel for electrolytic dressing, a power supply, and an electrolyte. A cast iron bonded diamond (CIB-D) wheel is dressed by electrolytic dressing and its electrolytic characteristics are evaluated. This study produced an ultra-precision lapping machine for in-process electrolytic dressing using super-abrasive CIB-D applied for lapping ceramics, sintered carbide, and optical glass.  相似文献   

16.
The oxide layer state directly relates to machining quality in electrolytic in-process dressing (ELID) grinding. In this paper, intermittent grinding control strategy was used to monitor and control the state of the oxide layer in interval ELID (ELID II) grinding. Some experiments were implemented based on active control of the oxide layer state. The influence of dressing current, wheel speeds, and grit size on surface roughness and waviness has been discussed in detail with ELID II grinding for bearing steel. The experimental results illustrate that the ELID II method can realize a stable grinding process based on active control of the oxide layer state. The surface roughness (Ra) and waviness (Wa) increase with increase of the dressing current. When the dressing current is constant, Ra and Wa reduce as wheel speed increases and decrease as grain size of wheel decreases. The experimental results also show that sufficient abrasive protrusion can be ensured in ELID II grinding, especially for grinding with a W2.5 super-abrasive wheel which may produce a very smooth surface quality, Ra 0.0166 μm and Wa 0.018 μm.  相似文献   

17.
小口径非球面玻璃透镜因具有极高的成像质量和成像分辨率而被广泛应用于中高档镜头中。在线电解修整(Electrolytic In-Process Dressing,ELID)磨削作为高效的镜面磨削方法被广泛应用于硬、脆等加工材料的镜面磨削。在精密平面磨床上安装喷嘴电解ELID磨削系统对硬质合金材料进行了喷嘴电解方式ELID磨削试验研究。实验分析了磨削力随着砂轮转速、工作台进给速度、磨削深度三个磨削工艺参数变化的规律。同时,相同的磨削参数下,比较喷嘴电解方式ELID磨削和普通磨削的磨削力研究。试验结果表明,喷嘴电解方式ELID磨削能明显降低磨削力,与普通磨削相比较,能更好的实现硬质合金材料的超精密磨削加工。  相似文献   

18.
Cylindrical surfaces are increasingly utilized in various areas, and related high-efficiency and high-quality fabricating technologies are of great importance and significant benefit to modern industry. To provide fundamental knowledge for the bearing industry, studies have been conducted on the use of cast-iron-bonded cubic boron nitride (cBN) superabrasive wheels, based on electrolytic in-process dressing (ELID) technique for realizing high-efficiency grinding of steel cylindrical workpieces. Therefore, in this investigation, experiments were carried out on an ordinary cylindrical grinder with a hydrodynamic spindle, and straight type grinding wheels of different grit sizes were used. The effects of grit sizes on surface roughness as well as waviness, roundness, and surface stress were evaluated in both the traverse and plunge grinding modes. Comparison of ELID grinding with other processes was also carried out. Mirror surface grinding of different materials was achieved with the #4000 CIB-cBN wheel. ELID grinding was confirmed to induce compressive stress and to be more cost effective for small batch production of larger components when it works in the traverse mode.  相似文献   

19.
超硬磨料砂轮的激光修锐技术研究   总被引:26,自引:4,他引:22  
激光修整超硬磨料砂轮的原理,利用Nd:YAG固体脉冲激光器进行激光修锐青铜结合剂和树脂结合剂硬磨料砂轮的试验,用扫描电镜观察了激光修锐前后砂轮表面的微观表貌,对激光作用下砂轮表面不同结合剂材料的去除机理进行了分析,通过磨削陶瓷试验,研究激光修锐的金刚石砂轮的磨削性能,并与普通砂轮磨削肖修锐的金刚石砂轮进行对比。结果表明,采用试验所确定的激光参数可选择性地去除砂轮表面的结合剂材料,而不损伤超硬磨粒,  相似文献   

20.
利用模压成型技术和真空钎焊技术制备出了磨粒把持力大、力学性能优良的多层钎焊金刚石砂轮;采用在线电解修整技术促使磨钝的磨粒及时脱落,使砂轮在磨削过程中始终保持锋利性;并开展了基于多层钎焊金刚石砂轮在线电解修整技术的超细晶硬质合金精密磨削试验。试验结果表明:在相同磨削条件下,多层钎焊砂轮在线电解修整磨削力较无修整时的磨削力下降了33.7%~57.9%;多层钎焊砂轮在线电解修整磨削技术能有效提高加工表面质量。当进给速度为30 mm/s,磨削深度为15 μm时,无电解磨削加工表面粗糙度为0.35 μm,而在线电解修整磨削表面粗糙度仅为82.1 nm;多层钎焊砂轮在线电解修整磨削残余应力仅为无电解磨削时的38.2%~49.5%。且在线电解修整磨削表面完整性较好,没有出现表面/亚表面裂纹等相关缺陷,可实现超细晶硬质合金等难加工材料的高效精密加工。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号