首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
介绍了一种高速采样/保持电路,分析了电路的非线性效应。该电路基于0.18μm GeSi BiCMOS工艺,采用全差分开环结构,通过射极负反馈和前馈误差放大器来改善输入缓冲放大器的线性度。采用交换式射极跟随器开关,可以提高电路的采样速度,减小谐波失真。三级级联的输出缓冲减小了下垂率,并增大对后级电路的驱动能力。在3.3V电源电压和500fF负载电容下,采用Cadence Spectre进行仿真分析。结果显示,在相干采样模式下,采样率为1.28GS/s时,在27℃温度下,整个电路的SFDR为77dB,THD为-68.38dB,功耗为133mW;采样率为2.5GS/s时,各个温度下均满足8位的精度要求,可用于高速A/D转换器。  相似文献   

2.
低电压低功耗CMOS采样保持电路   总被引:2,自引:0,他引:2       下载免费PDF全文
郑晓燕  王江  仇玉林   《电子器件》2006,29(2):318-321
设计了一个用于流水线型模数转换器的低压采样保持电路。为降低采保电路中运放的功耗,本文采用了增益补偿的采样保持电路结构,从而用简单的低增益运放达到高精度的效果。并从运放输出建立时间的角度对其输入电流进行优化。为了提高精度,降低采样开关的电阻并减小非线性误差,设计了信号相关自举电压控制的开关。仿真结果表明在1.8V的电源电压下,达到10bit的精度和50Mbit的采样率,整个采保电路的功耗仅为2.3mW。  相似文献   

3.
孙伟  王永禄  杨鑫  何基 《微电子学》2019,49(3):326-330
基于130 nm BiCMOS工艺,设计了一种12位高速采样保持电路,对电路的主要性能进行了分析。电路采用差分结构,采样开关是开环交换射极跟随开关。在输入信号范围内,缓冲器的线性度较高。采用Cadence Spectre软件进行仿真。结果表明,当采样率为2 GS/s,模拟输入差分信号为992 MHz频率、0.5Vpp幅度的正弦波时,SFDR达75.11 dB,SNDR达73.82 dB,电路功耗仅为98 mW,满足了12位采样保持的要求。  相似文献   

4.
一种用于流水线A/D转换器的低功耗采样/保持电路   总被引:1,自引:0,他引:1  
陈曦  何乐年 《微电子学》2005,35(5):545-548
文章介绍了一种适用于10位20MS/s流水线A/D转换器的采样/保持(S/H)电路。该电路为开关电容结构,以0.6μm DPDM CMOS工艺实现。采用差分信号输入结构,降低对共模噪声的敏感度,共模反馈电路的设计稳定了共模输出,以达到高精度。该S/H电路采用低功耗运算跨导放大器(OTA),在5V电源电压下,功耗仅为5mW。基于该S/H电路的流水线A/D转换器在20MHz采样率下,信噪比(SNR)为58dB,功耗为49mW。  相似文献   

5.
薛喆  何进  陈婷  王豪  常胜  黄启俊  许仕龙 《半导体技术》2017,42(12):892-895,917
采用0.25 μm SiGe双极CMOS (BiCMOS)工艺设计并实现了一种传输速率为25 Gbit/s的高速跨阻前置放大器(TIA).在寄生电容为65fF的情况下,电路分为主放大器模块、两级差分模块和输出缓冲模块.相比传统的跨阻放大器,TIA采用Dummy形式实现了一种伪差分的输入,减小了共模噪声,提高了电路的稳定性;在差分级加入了电容简并技术,有效地提高了跨阻放大器的带宽;在各级之间引入了射极跟随器,减小了前后级之间的影响,改善了电路的频域特性.电路整体采用了差分结构,抑制了电源噪声和衬底噪声.仿真结果表明跨阻放大器的增益为63.6 dBQ,带宽可达20.4 GHz,灵敏度为-18.2 dBm,最大输出电压为260 mV,功耗为82 mW.  相似文献   

6.
为实现数字通信对高速模数转换器的要求,基于0.18μm SiGe BiCMOS工艺提出了一款8 GS/s采样率、6 bit的采样保持电路。电路采用全差分开环结构,利用射极跟随型采样开关实现了电路高采样率。采样开关中采用晶体管线性补偿技术,有效地提高了采样保持电路的线性度。输出缓冲电路采用级联结构实现高线性度,并提高了电路的驱动能力。测试结果发现,在采样模式下单端输入信号频率4 GHz、采样时钟频率8 GHz条件下,有效位数为5.4 bit,无杂散动态范围为37.6 dB,总谐波失真为37.5 dB,总功耗为450 mW,芯片尺寸为0.68 mm×0.68 mm。  相似文献   

7.
杜大海  熊飞  林云松 《半导体技术》2010,35(12):1222-1225
介绍了一种应用于传感器的高线性度低功耗全差分4阶贝塞尔开关电容滤波器.该滤波器的运算放大器为输出AB类运算放大器,通过AB类运算放大器以及开关电容共模反馈的设计,降低了功耗.在运算放大器中设计了线性跨导环,并通过对电路的拓扑结构进行优化,提高了滤波器的线性度.测试结果表明,在采样频率为1 MHz下,该滤波器的截止频率为10.05 kHz.在输入信号频率为1 kHz,输出信号的总谐波失真(THD)为-89 dB(摆幅为2 V),功耗为5.54 mW,达到了高线性度、低功耗的设计要求.  相似文献   

8.
一种基于SiGe BiCMOS的高速采样/保持电路   总被引:1,自引:1,他引:0  
设计了一种基于BiCMOS工艺的高速采样/保持电路,该工艺提供了180 nm的CMOS和75 GHz fT的SiGe HBT.差分交换式射极跟随器和低下垂输出缓冲器的结合,使电路具有更好的性能.在Cadence Spectre环境下进行仿真,当输入信号为968.75 MHz、Vpp为1 V的正弦波,采样速率为2 GSPS时,该采样/保持电路的SFDR达到62.2 dB,THD达到-59.5 dB,分辨率达到9位;在3.3 V电源电压下,电路功耗为20 mW.  相似文献   

9.
提出了一种拓展带宽的新型电路拓扑结构,该结构由四级射极跟随器级联而成,通过自适应有源偏置电路调节各级晶体管跨导,以及改变级间电感与后一级射极跟随器的结电容Cbe谐振峰的频率位置来拓展带宽.对其工作原理和稳定性进行了分析,并基于2 μm InGaP/GaAs HBT工艺,设计了应用此结构的宽带放大器.仿真结果表明:新型电...  相似文献   

10.
设计了一种具有中频采样功能的流水线ADC采样保持前端电路.采样保持前端电路采用基于开关电容的底板采样翻转式结构,运算放大器采用了米勒补偿型两级结构以提高信号摆幅,采样开关采用了消除衬底偏置效应的自举开关以提高中频采样特性.该采样保持前端电路被运用于一种12位250 MSPS流水线ADC,电路采用0.18μm lP5M 1.8 V CMOS工艺实现,测试结果表明该ADC电路在全速采样条件下对于20 MHz的输入信号得到的SNR为69.92 dB,SFDR为81.17 dB,-3 dB带宽达700 MHz以上,整个前端电路的功耗为58 mW.  相似文献   

11.
基于IHP锗硅BiCMOS工艺,研究和实现了两种220 GHz低噪声放大器电路,并将其应用于220 GHz太赫兹无线高速通信收发机电路。一种是220 GHz四级单端共基极低噪声放大电路,每级电路采用了共基极(Common Base, CB)电路结构,利用传输线和金属-绝缘体-金属(Metal-Insulator-Metal, MIM)电容等无源电路元器件构成输入、输出和级间匹配网络。该低噪放电源的电压为1.8 V,功耗为25 mW,在220 GHz频点处实现了16 dB的增益,3 dB带宽达到了27 GHz。另一种是220 GHz四级共射共基差分低噪声放大电路,每级都采用共射共基的电路结构,放大器利用微带传输线和MIM电容构成每级的负载、Marchand-Balun、输入、输出和级间匹配网络等。该低噪放电源的电压为3 V,功耗为234 mW,在224 GHz频点实现了22 dB的增益,3 dB带宽超过6 GHz。这两个低噪声放大器可应用于220 GHz太赫兹无线高速通信收发机电路。  相似文献   

12.
采用CSMC0.6μm CMOS工艺设计实现了速率为622Mbps的4∶1复接器和激光二极管驱动器电路。4∶1复接器采用树型结构,由3个2∶1复接器组成。激光二极管驱动器电路由两级差分放大器和一级电流开关构成,级间采用源级跟随器隔离。电路芯片尺寸为1.5mm×0.7mm。电路采用单一正5V电压供电,功耗约为900mW。测试结果表明,电路的最高工作速率超过1.25Gbps速率,输出最大电流超过85mA。  相似文献   

13.
设计了一种的低成本、低功耗的10 Gb/s光接收机全差跨阻前置放大电路。该电路由跨阻放大器、限幅放大器和输出缓冲电路组成,其可将微弱的光电流信号转换为摆幅为400 mVpp的差分电压信号。该全差分前置放大电路采用0.18 m CMOS工艺进行设计,当光电二极管电容为250 fF时,该光接收机前置放大电路的跨阻增益为92 dB,-3 dB带宽为7.9 GHz,平均等效输入噪声电流谱密度约为23 pA/(0~8 GHz)。该电路采用电源电压为1.8 V时,跨阻放大器功耗为28 mW,限幅放大器功耗为80 mW,输出缓冲器功耗为40 mW,其芯片面积为800 m1 700 m。  相似文献   

14.
采用0.35μmSiGeBiCMOS工艺设计了一个1∶2分接器,核心电路单元采用经过改进的电路结构实现。由于传统的发射极耦合逻辑结构(ECL)电路的工作速度不能达到要求,对此加以了改进,在发射极耦合逻辑结构中增加一级射极跟随器,形成发射极-发射极耦合逻辑(E2CL)结构,从而提高电路的工作速度。测试结果显示,所设计分接器的工作速度可以达到40Gb/s。整个电路采用单电源5V供电,功耗为510mW。  相似文献   

15.
为适应目前无线通信领域对高速A/D转换器的要求,采用在Cadence Spectre环境下进行仿真验证的方法,对高速A/D前端采样保持电路进行了研究.提出的高速采样保持电路(SH)采用SiGe BiCMOS工艺设计,该工艺提供了0.35 μm的CMOS和46 GHz TT的SiGe HBT.基于BiCMOS开关射极跟随器(SEF)的SH,旨在比二极管桥SH消耗更少的电流和面积.在SH核心,电源电压3.3 V,功耗44 mW.在相干采样模式下,时钟频率为800 MHz时,其无杂波动态范围(SFDR)为-52.8 dB,总谐波失真(THD)为-50.4 dB,满足8 bit精度要求.结果显示设计的电路可以用于中精度、高速A/D转换器.  相似文献   

16.
设计实现了一种具有高增益大带宽的全差分增益自举运算放大器,适用于高速高精度流水线模数转换器采保电路的应用.增益自举放大器的主放大器和子放大器均采用折叠共源共栅式全差分结构,并且主放大器采用开关电容共模反馈来稳定输出电压.该放大器工作在3.0 V电源电压下,单端负载为2pF,采用0.18Wn CMOS工艺库对电路进行仿真,结果显示该放大器的直流增益可达到112dB,单位增益带宽为1.17GHz.  相似文献   

17.
徐化  王磊  石寅  代伐 《半导体学报》2011,32(9):095004-6
本文介绍了一种工作在2.4GHz频段的低功耗、低噪声、高线性射频接收机前端电路,该接收前端电路使用新型的带三种增益模式的LNA,并提出一种新的片上非平衡变压器优化技术。前端电路采用了直接变频结构,使用片上非平衡变压器实现低噪声放大器与下变频混频器之间的单端-差分转换,优化设计以提高前端电路的噪声性能。本文使用锗硅0.35um BiCMOS工艺,所采用的技术同样适用于CMOS工艺。前端电路总的最大转换增益为36dB;在高增益模式下的双边带噪声系数为3.8dB;低增益模式下,输入三阶交调点位12.5dBm。为了获得最大的输入动态范围,低噪声放大器采用三种可调增益模式,低增益模式使用by-pass结构,大大提高了大信号输入下接收前端的线性度。下变频混频器在输出端使用可调R-C tank,滤除带外高频杂波。混频器输出使用射极跟随器作为输出极驱动片外50ohm负载。该接收前端在2.85-V电源供电下,功耗为33mW,芯片面积为0.66mm2。  相似文献   

18.
马绍宇  韩雁   《电子器件》2008,31(3):894-897
描述了一个应用于高集成度2 GHz频率综合器的预分频电路的设计,预分频电路中D触发器采用了源极耦合逻辑电路结构,可以提高电路工作频率,同时有效减小开关噪声和电路功耗.预分频电路采用TSMC 0.25 μm IPSM CMOS工艺实现,Spectre仿真表明,在1.8 V的电源电压下,经过优化的预分频电路能够在各种工艺条件和温度下正常工作,整体功耗为6.2 mw(单个D触发器功耗仅为1.8 mW),满足手持设备的要求.  相似文献   

19.
设计了一个低功耗宽摆幅全差分开关电容可编程增益放大器(PGA).该放大器可实现近似1 dB步进,0~15 dB增益变化范围,可用于CMOS图像传感器.提出了一种可调补偿电容的运算跨导放大器(OTA),通过补偿电容调节OTA带宽,大大降低了PGA的功耗.采用TSMC 3.3 V 0.18 μm工艺,在20 MSPS采样率下,使用Hspice仿真.结果显示,电路功耗仅为7 mW,输出摆幅为轨至轨,精度为12位.  相似文献   

20.
王自强  池保勇  王志华 《半导体学报》2005,26(12):2401-2406
设计了一种CMOS宽带、低功耗可变增益放大器.在分析使用源极退化电阻的共源放大器高频特性基础上,通过加入频率补偿电容改变放大器的零极点分布,在不增加功耗的情况下扩展了带宽.分析了放大器在低增益下出现的增益尖峰现象并加以解决.使用跨导增强电路提高了放大器的线性度.两级可变增益放大器使用TSMC0.25μm CMOS工艺.仿真结果表明,放大器在3.3V电压下核心电路功耗为3.15mW,增益范围0~40dB;在负载为5pF电容时3dB带宽大于340MHz,输出三阶交调点高于3.5dBm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号