共查询到18条相似文献,搜索用时 62 毫秒
1.
针对现有图像去雾算法在处理道路交通图像时无法同时兼顾去雾效果和实时性的问题,本文以快速一体化网络去雾算法(AOD-Net)为基础进行改进.首先,在AOD-Net中添加SE通道注意力,以自适应的方式分配通道权重,关注重要特征;其次,引入金字塔池化模块,扩大网络的感受野,并融合不同尺度特征,更好地捕捉图像信息;最后,使用复合损失函数同时关注图像像素信息和结构纹理信息.实验结果表明,改进后的AOD-Net算法对道路交通图像去雾后的峰值信噪比提升了2.52 dB,结构相似度达到了91.2%,算法复杂度和去雾耗时略微增加,但仍满足实时要求. 相似文献
2.
《计算机应用与软件》2013,(4)
在有雾天气条件下拍摄的图像,由于大气的散射作用,导致图像的内容模糊不清,对比度下降,给交通系统及户外视觉系统的应用带来严重的影响。通过改进大气物理退化模型,在多尺度Retinex算法MSR(Multi-Scale Retinex)的基础上,提出一种新的去雾方法。该方法根据雾天成像机理对图像建立模型,再根据MSR算法对建模后的图像进行处理。实验表明,该方法能有效去除雾化效果,实现彩色退化图像的复原。 相似文献
3.
针对现有图像去雾方法存在的颜色失真、细节丢失以及去雾效果不自然等问题,提出一种改进的循环生成式对抗网络用于图像去雾。通过添加多尺度鉴别器作为判别器来改进原始网络结构,增强判别能力,引导网络产生更精细自然的无雾图像。同时重新设计损失函数,使用最小二乘代替交叉熵作为对抗损失,引入循环感知损失,结合原始循环一致性损失组成新的复合损失函数,提高图像颜色与细节恢复的质量。在D-HAZY和SOTS数据集上的实验结果表明:该方法能够生成较为自然的无雾图像,其主观效果和客观指标均优于对比方法,具有更好的去雾能力;与原始循环生成式对抗网络相比,峰值信噪比从19.052 dB提高至23.128 dB,结构相似性指数从0.787提高至0.867。与DehazeNet、AOD-Net与GCANet等主流去雾方法相比,峰值信噪比和结构相似性指数比排名第二的方法分别提升7.1%和4.3%。 相似文献
4.
与基于图像增强的去雾算法和基于物理模型的去雾算法相比,基于深度学习的图像去雾方法在一定程度上提高计算效率,但在场景复杂时仍存在去雾不彻底及颜色扭曲的问题.针对人眼对全局特征和局部特征的感受不同这一特性,文中构建基于生成对抗网络的图像去雾算法.首先设计多尺度结构的生成器网络,分别以全尺寸图像和分割后的图像块作为输入,提取图像的全局轮廓信息和局部细节信息.然后设计一个特征融合模块,融合全局信息和局部信息,通过判别网络判断生成无雾图像的真假.为了使生成的去雾图像更接近对应的真实无雾图像,设计多元联合损失函数,结合暗通道先验损失函数、对抗损失函数、结构相似性损失函数及平滑L1损失函数训练网络.在合成数据集和真实图像上与多种算法进行实验对比,结果表明,文中算法的去雾效果较优. 相似文献
5.
针对遥感图像由于雾霾的存在导致图像清晰度下降的问题,提出了一种基于深度学习的图像去雾算法.首先将原有大气散射模型进行变形得到一个端到端的去雾模型,再将多个未知参数统一在一个参数中,运用多尺度卷积神经网络对未知参数进行估计,最后将参数估计值代入去雾模型中得到无雾图像.针对无参考图像数据集,先运用现有数据集对网络进行初步训练,再加入自建数据集对网络进行二次训练.实验结果表明,与相关去雾算法进行对比,该算法在视觉效果和客观指标上都有不同程度的提高,有效提升了遥感图像在雾霾天气状况下的清晰度. 相似文献
6.
一种自适应的图像去雾算法 总被引:1,自引:0,他引:1
基于图像暗通道先验规律的图像去雾算法是当前一种比较先进的基于模型的图像去雾算法,但也存在一些缺陷和不足,例如:算法计算量较大,处理时间较长;可能出现去雾失败现象。针对此类问题,提出一种自适应的图像去雾算法,使用基于暗点优先膨胀算法提高图像暗通道计算速度;采用引导式滤波算法快速细化透射图,改善了"白边(halo)"现象;根据图像本身的特征自适应地计算去雾参数,有效减少去雾失败的现象。实验结果表明,该算法可以动态地适应图像的特征,自适应地调整相关参数,计算效率和效果更好,可以满足视频去雾的需求。 相似文献
7.
基于先验的图像去雾算法依赖于大气散射模型,易受环境影响出现去雾不彻底、颜色失真等现象,针对上述问题本文基于深度学习,提出一种多尺度密集感受域的GAN图像去雾算法。首先构建一个多尺度学习的生成器网络,通过3种不同尺度提取图像的局部细节和全局信息后进行特征融合;然后通过感受密集块来增大感受野并获得丰富的上下文信息,将提取到的特征图在多个感受密集块中对特征进一步细化;接着使用一个多尺度的GAN判别器,由2个相同的子判别器D1和D2组成,2个子判别器联合指导生成器的训练;最后本文结合L1损失、感知损失和对抗损失,设计一个多元损失函数来收敛网络。在SOTS测试集上进行主观评价和客观评价,实验结果表明,本文算法取得了较优的效果,有效改善去雾不彻底的现象。 相似文献
8.
针对当前已有的去雾方法容易造成天空区域存在光晕以及色彩失真的现象,提出了一种多尺度卷积结合大气散射模型的单幅图像去雾算法。将原始有雾图像与三个不同尺度的卷积核进行卷积,经过一系列特征学习后得到粗略的传播图,然后使用引导滤波器对其进行优化,得到精细化后的传播图。利用粗传播图和有雾图像计算出全局大气光。根据大气散射模型反推出无雾清晰图像。实验结果表明,该方法对天空区域的处理更加自然,在图像的纹理细节以及颜色失真上有较好的效果。 相似文献
9.
为了达到良好的图像去雾效果,提出一种高斯自适应多尺度加权滤波去雾算法。通过多尺度最小值加权滤波得到暗通道图像,建立最小通道与高斯函数的关系,线性约束后并经过自适应参数对像素灰度值的调整得到粗级透射率,紧接着对得到的粗级透射率图像进行多尺度加权引导滤波得到优化透射率,结合加权大气光强并依据大气散射模型对图像进行去雾复原处理。实验结果表明,该方法有效地将单幅有雾图像进行了处理,与其他经典算法相比较得到的图像细节显示效果好,很好地恢复了场景的对比度,增加了图像的可见度,具备一定的优异性。 相似文献
10.
在户外起雾的情况下,人们通过摄像机所拍摄的照片往往非常不清楚,照片通常呈现灰暗的色彩,图片的清晰度不高,很容易造成图像的一些信息丢失,难以被检测到。这使目标识别的难度大大提高,户外视频监控的有效性也被极大破坏。据此,提出了一种改进型的去雾算法。首先通过对场景透射率进行粗估计来得到一种块透射率,再对块透射率进行更深一步的细化处理来得到较准确的场景透射率,最后使用一种改进的容差机制修正场景透射率错误估计的区域来获得一个更加准确的透射率值。通过与已有去雾算法对比,验证了所提算法在图像去雾的各项指标中的优越性。该算法在图像去雾领域具有广阔的应用前景。 相似文献
11.
基于改进KAZE的无人机航拍图像拼接算法 总被引:1,自引:1,他引:1
为了更好地解决航拍图像易受光照、旋转变化、尺度变化等影响,KAZE算法实时性较差以及基于K近邻的特征匹配算法耗时较长等问题,该文提出了一种基于改进KAZE的无人机航拍图像拼接算法.该方法首先利用加速的KAZE算法提取图像的特征点,采用二进制特征描述子FREAK(Fast retina keypoint)进行特征点描述,然后使用Grid-KNN算法进行特征点粗匹配,利用随机一致性算法对匹配的特征点进一步提纯并计算几何变换模型,最后采用加权平均算法对图像进行融合.实验结果表明,该文所提算法使图像在光照变化、旋转变化及尺度变化下具有较好的性能,且处理速度较KAZE算法与K近邻特征匹配算法有较大提升,是一种稳定、精确度高、拼接效果良好的无人机航拍图像拼接方法. 相似文献
12.
在雾霾环境下获取的图像往往不清晰,整体图片亮度较高。 Retinex算法是一种新型的图像增强方法,与传统的图像特征增强方法相比,有很多优点,如色彩恒定不变、处理速度快、颜色具有很好的视觉特征等,但是其也有对亮度较大的位置处理效果不佳和光照变化较大会出现光晕的缺点。对Retinex算法进行了研究和改进,使其克服了出现光晕和对较亮图像处理效果不佳的缺点。实验结果表明,改进算法克服了上述缺点,获得了更好的图像增强的效果,是一种适应性强、鲁棒性高的图像增强算法。 相似文献
13.
随着图像处理技术和计算机视觉技术的蓬勃发展,对特殊天气下的场景检测和图像处理成为该领域的重要研究方向.其中在雾天拍摄的图像容易受雾或霾的影响,导致图片细节模糊、对比度低以至于丢失图像重要信息,为解决此类问题图像去雾算法应运而生.图像去雾算法是以满足特定场景需求、突出图片细节并增强图片质量为目的的一种图像分析与处理方法.... 相似文献
14.
图像去雾算法清晰化效果客观评价方法 总被引:21,自引:3,他引:21
针对目前去雾效果评价方法少和已有评价方法存在局限性等问题, 提出了两种图像清晰化效果评价方法.一种借助由环境渲染或光路传播图所模拟的雾 环境图像,采用全参考方式评估算法的去雾效果;一种从人类视觉感知的角度出发,采 用无参考方式构建综合评价体系以全面衡量算法的去雾性能.实验证明两种方法均能 有效地评价各算法的清晰化效果,且评估结果与人眼的主观感受相一致.本文所提评 价方法分别从构建模拟雾环境和人类视觉感知两方面考虑,与已有评价方法相比,在 获得全方面评估结论的同时,具有较好的实用性和可靠性. 相似文献
15.
针对场景中雾气分布可能不均匀的问题,本文提出了一种基于雾气遮罩减除的图像去雾算法。首先对降质图像平滑滤波以估计其亮度分量,对亮度分量求均值得到均匀分布的雾气遮罩,并结合退化图像获取与场景深度信息相关的雾气遮罩。在对数域中从降质图像中减除获得的雾气遮罩,即可得到场景的反射图像。对反射图像进行自适应的对比度拉伸,可以得到最终的去雾结果。所提算法能较容易地扩展至视频去雾应用,真实场景的图片与视频实验验证了所提算法的有效性。 相似文献
16.
17.
现有去雾算法较少考虑交通图像的特征,直接应用于交通图像去雾效果和实时性较差。针对这一情况,在充分分析了雾天交通图像特征的基础上,提出一种基于图像分割的交通图像快速去雾算法。算法首先采用改进的均值漂移算法分割出天空区域,然后在天空区域中较准确的估计出大气光强度值,最后采用基于双边滤波器的改进暗原色先验(DCP)算法实现去雾,并结合雾天交通图像的特征对去雾图像进行了后处理,增强了去雾效果。实验结果证明该算法实时性高且去雾效果好,在交通图像去雾方面所提出的算法的综合性能优于现有的同类去雾算法。 相似文献