首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
基于自适应神经模糊推理系统的非线性系统控制   总被引:4,自引:0,他引:4  
由于非线性系统具有模糊性、不确定性、非线性等特点,所以常常使用模糊控制来对其实现控制,但常规的模糊控制系统存在着一定的问题。该文把神经网络与模糊控制相结合,介绍了自适应神经元模糊推理系统ANFIS(Adaptive Neuro—Fuzzy Inference System)的基本结构,并将ANFIS用于典型的非线性系统控制中,仿真结果表明训练后的ANFIS能很好地控制实际的对象。  相似文献   

2.
3.
针对已有的自适应神经模糊推理系统(ANFIS)在模糊规则后件表达上的缺陷和常见的模糊推理系统存在的主要问题,提出基于Choquet积分OWA的模糊推理系统(AggFIS),在模糊规则的后件表达、模糊算子的普适性和输入及规则的权重等方面有很大优势,它试图建立能够充分体现模糊逻辑本质和人类思维模式的模糊推理系统.根据模糊神经网的基本原理将AggFIS与前馈神经网络相结合,得到基于Choquet积分-OWA的自适应神经模糊推理系统(Agg-ANFIS),并将该模型应用于交通服务水平评价问题.实验结果证明,基于Choquet积分OWA的自适应神经模糊推理系统具有很好的非线性映射功能,它的本质是一类通用逼近器,为解决复杂系统的建模、分析及预测问题提供了有效的途径.  相似文献   

4.
自适应神经模糊推理系统建模研究   总被引:2,自引:0,他引:2  
鲁斌  何华灿 《计算机科学》2003,30(10):40-44
With rapid development of the fuzzy control application field, the existing system for fuzzy inferring modeling cannot more and more suit the requirements of fuzzy control. About how to apply the theories of fuzzy control to practice rapidly and conveniently, this paper presents a reasonable and practical method, which supports all sorts of fuzzy inferring system of MAMDANI and SUGENO to be modeled not only by tuning references of membership functions, but also by tuning fuzzy inferring structure. The modeling instance shows that it's practical and effective.  相似文献   

5.
手势识别中的一种常见方式是通过表面肌电信号来实现。为提高手势识别的稳定性和精度, 通常需要采集多个通道的肌电信号,但这会增加电极传感器的数量以及识别系统的复杂度。因此,如 何利用较少量的通道采集信号并确保手势识别的性能一直是肌电信号应用到意图识别的研究方向之 一。该研究设计了一款便携式四通道肌电和阻抗双模信号采集器,在不增加额外传感器和通道数的情 况下,能同时采集肌电信号和差分电极对之间的组织阻抗信号。初步实验结果表明,通过该系统采集 的四通道融合信息可以提升手势识别的准确率和稳定性。与仅采集肌电信息相比,该研究采用的肌电 与阻抗信息融合方法可以将手势识别性能提升 3% 以上,达到 96.2% 的识别率。  相似文献   

6.
在当前科学技术快速发展的大背景下,通过应用卷积神经网络原理,能够将表面肌电信号的手势通过一维多通道的方式识别出来,避免在前期采用复杂的方法对表面信号进行预处理以及对信息采用手工提取方法所花费的时间.基于此,以右手为活动手,分析了握拳、向左、向右以及展拳4种手势时的表面肌电信号.将不同手势的肌电信号进行标记,生成信号长度不同的8通道信号训练集和测试集,并借助卷积神经网络的相关原理分析了卷积状态下的采样.借助相关研究后通过卷积神经网络的应用,能够实现卷积神经网络表面肌电信号的高效处理,从而实现对手势信号的识别,且识别率能够满足具体使用需求,因此其在实际工作中应用是有价值的.  相似文献   

7.
基于视觉的手势识别是实现新一代人机交互的关键技术。通过手势识别向屏幕输入文字以供搜索查找的系统基本没有,在现有的手势识别基础上,利用汉语字母和数字对应的手语作为输入手势,采用微软的kinect获取深度图像,对其进行手势分割。通过Canny算法提取手势的边缘,利用小波矩提取特征,得到手势字母,实现了具有手势识别以及基于文字输入功能的系统。实验表明该系统能够准确有效地实现汉字的输入。  相似文献   

8.
为了提升表面肌电信号(sEMG)手势动作识别的准确性和训练效率,提出一种基于LightGBM的手势识别模型.传统的GBDT算法训练效率较低,准确率无法快速提升,LightGBM算法采用基于梯度的单侧采样和互斥特征捆绑改进性能,具有训练速度快、占用内存低、分类准确率高的优势.将臂环采集到的8通道sEMG数据按时间顺序进行...  相似文献   

9.
针对信号处理领域噪声消除的实际问题,提出了一种基于模糊推理的自适应神经网络控制方法.通过自适应神经模糊推理系统(ANFIS)对非线性系统的结构和参数进行辨识与自学习,采用混合学习算法,对前向参数和结论参数分别辨识,在提高精度的同时可加快训练收敛的速度,使控制系统具有良好动静态性和鲁棒性,实现了消除通信系统中噪声的目标,最后对基于ANFIS的噪声消除系统进行了建模和仿真,并与自适应神经网络滤波方法的结果对比,其结果证明了该方法的有效性.  相似文献   

10.
王艳永  邓方  孙健 《控制理论与应用》2013,30(10):1342-1346
角度传感器测量精度控制在工程应用中非常重要, 直接影响其实际应用的效果. 当被测物理量和角度传感器输出之间为复杂非线性关系时, 传统方法已难以获得满意的结果. 本文引入了一种基于改进的自适应神经模糊推理系统的误差补偿方法, 阐述了模型建立过程与步骤, 并对一个16位绝对式光电编码器进行了精度检测与误差补偿. 实验结果证明, 与多项式拟合法和BP神经网络相比, 改进的自适应神经模糊推理系统可显著提高光电编码器的测量精度; 相比于补偿前, 补偿后光电编码器测量精度可至少提高7.5倍.  相似文献   

11.
学习评价是网络学习中十分重要的环节,为克服原有网络学习评价方法的不足,构建一种基于自适应模糊神经系统的评价模型,并进行实验仿真。测试结果表明,基于自适应模糊神经系统的网络学习评价模型提高了网络学习评价的准确率,为网络学习提供一种新评价方法。  相似文献   

12.
基于模糊聚类神经网络的语音识别方法   总被引:8,自引:0,他引:8  
刘宇红  刘桥  任强 《计算机学报》2006,29(10):1894-1900
提出了一种基于模糊神经网络的语音识别方法.该方法以模糊系统模型为基础,利用改进的模糊聚类辨识算法,构成一种新型的模糊聚类神经网络(FCNN),并将其作为概率密度函数的估计器,对每个状态的输出进行预测.它不仅能有效地在语音识别中引入帧间相关信息,而且能克服状态输出概率密度函数为混合高斯分布的束缚.通过对非特定人汉语孤立词和连续音节的语音识别实验,证实了该方法的有效性.  相似文献   

13.
如何生成最优的模糊规则数及模糊规则的自动生成和修剪是模糊神经网络训练算法研究的重点。针对这一问题,本文提出了基于UKF的自适应模糊推理神经网络(UKF-ANFIS)。首先,通过减法聚类确定UKF-ANFIS的模糊规则及其高斯隶属函数的中心和宽度参数;其次,分析了模糊神经网络的非线性动力系统表示,并用LLS和UKF分别学习线性和非线性的参数;然后,用误差下降率方法作为模糊规则修剪的策略,删除作用不大的规则;最后,通过典型的函数逼近和系统辨识实例,表明本文算法得到的模糊神经网络的结构更为紧凑,泛化性能也更佳。  相似文献   

14.
该文提出一种基于词汇模糊集合的模糊推理机以识别汉语主观句。首先,根据主、客观词概念的模糊性,我们定义了两个相应的模糊集合,并在模糊统计方法下,利用TF-IDF从训练语料中获取隶属度函数。然后制定了两个模糊IF-THEN规则,并据此实现了一个模糊推理机以识别汉语主观句。NTCIR-6中文数据上的实验结果表明我们的方法具有一定的可行性。
  相似文献   

15.
将一种神经—模糊结构—自适应神经模糊推理系统 (简称ANFIS)用于非线性电机系统的建模 ,获得了一个良好的大范围的全局非线性模型 ,同时 ,通过与反向传播网络建模结果的性能对比 ,说明ANFIS在参数收敛速度及建模精度上的优越性。显示出ANFIS是非线性系统的建模、辨识的有力工具  相似文献   

16.
针对现有的单目视觉下动态手势识别率低、识别手势种类少等问题提出一种联合卷积神经网络和支持向量机分类(CNN-Softmax-SVM)的动态手势识别算法.首先采用一种基于YCbCr颜色空间和HSV颜色空间的快速指尖检测跟踪,能在复杂背景下实时获取指尖运动轨迹;其次将指尖运动轨迹作为联合CNN-Softmax-SVM网络的输入,最终通过训练网络来识别动态手势.测试结果显示,采用联合CNN-Softmax-SVM算法能够很好地识别动态手势.  相似文献   

17.
Wind is one kind of clean and free renewable energy sources. Wind speed plays a pivotal role in the wind power output. However, due to the random and unstable nature of the wind, accurate prediction of wind speed is a particularly challenging task. This paper presents a novel neural fuzzy method for the hourly wind speed prediction. Firstly, a neural structure is proposed for the functional-type single-input-rule-modules (FSIRMs) connected fuzzy inference system (FIS) to combine the merits of both the FSIRMs connected FIS and the neural network. Then, in order to achieve both the smallest training errors and the smallest parameters, a least square method based parameter learning algorithm is presented for the proposed FSIRMs connected neural fuzzy system (FSIRMNFS). Further, the proposed FSIRMNFS and its parameter learning algorithm are applied to the hourly wind speed prediction. Experiments and comparisons are also made to show the effectiveness and advantages of the proposed approach. Experimental results verified that our study has presented an effective approach for the hourly wind speed prediction. The proposed approach can also be used for the prediction of wind direction, wind power and some other prediction applications in the research field of renewable energy.   相似文献   

18.
Hand gestures are a natural way for human-robot interaction.Vision based dynamic hand gesture recognition has become a hot research topic due to its various applications.This paper presents a novel deep learning network for hand gesture recognition.The network integrates several well-proved modules together to learn both short-term and long-term features from video inputs and meanwhile avoid intensive computation.To learn short-term features,each video input is segmented into a fixed number of frame groups.A frame is randomly selected from each group and represented as an RGB image as well as an optical flow snapshot.These two entities are fused and fed into a convolutional neural network(Conv Net)for feature extraction.The Conv Nets for all groups share parameters.To learn longterm features,outputs from all Conv Nets are fed into a long short-term memory(LSTM)network,by which a final classification result is predicted.The new model has been tested with two popular hand gesture datasets,namely the Jester dataset and Nvidia dataset.Comparing with other models,our model produced very competitive results.The robustness of the new model has also been proved with an augmented dataset with enhanced diversity of hand gestures.  相似文献   

19.
介绍了一种具有模糊推理机制的模糊知识系统的基本结构、知识表示和推理机制,阐述了在模糊知识库设计与实现中,模糊推理机构造和工作流程设计的方法。该系统推理机制是基于传统RETE算法的扩展,通过使用相似性方法来处理模糊问题,实现了一种较为理想的不确定性推理;同时系统采用正向和反向推理相结合的双向推理机,使推理具有较高的准确性。最后给出了一个实例验证系统可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号