共查询到20条相似文献,搜索用时 12 毫秒
1.
房柱式及巷式矸石充填开采中,煤柱与矸石两两相隔,破碎矸石充填体处于侧限压缩状态,破碎矸石的密实程度、孔隙特征及渗透特性对于煤层瓦斯流动及地下水渗流的控制具有重要的价值。基于稳态渗透法及轴向位移控制法,利用一套自制的破碎岩体渗透试验系统,测定了破碎矸石在不同混合粒径下承压过程中的非Darcy流渗透特性,得到渗透特性(渗透率k和非Darcy流β因子)随孔隙率的变化规律。研究表明:1)雷诺数计算及孔压梯度与渗流速度关系曲线说明破碎矸石的渗透特征属于非Darcy流;2)孔隙率随着压缩位移的增加而减小,对于混合粒径试样,较小颗粒充填到较大颗粒的孔隙中,是使岩样的初始孔隙率减小的主要原因;3)在侧限压缩下,大颗粒受挤压破碎是产生0~2.5 mm粒径的原因,而渗流造成细小颗粒质量流失;4)侧限压缩下,渗透率总的趋势减小,而非Darcy流β因子增加,但在压缩过程中,渗透特性的变化趋势受颗粒粒径的影响会出现局部波折,说明破碎矸石的渗透特性与侧限压缩位移、颗粒粒径大小、压缩破碎、排列方式及孔隙结构(通道)有关。 相似文献
2.
3.
充填体在采场内由于被围岩包围,其力学性能与实验室单轴压缩条件下不同。为了研究采场充填体的力学性能及规律,提出了不同灰砂比充填体在侧限约束条件下的分级单轴压缩固结试验,分级压力为1kN(0.2 MPa)、2kN(0.4 MPa)、4kN(0.8 MPa)、8kN(1.6 MPa)、16kN(3.2 MPa)、32kN(6.4MPa)、64kN(12.8MPa)、128kN(25.6MPa)。试验结果表明:随着固结压力的增大,充填体压缩量呈线性增加,灰砂比对充填体压缩量影响不明显;固结应力与压缩率呈二次函数曲线关系;固结前后充填体的单轴抗压强度增加明显,28d龄期强度值增加幅度达24%以上。最后,采用SEM对充填体固结强化机理进行了分析。 相似文献
4.
通过侧限压缩试验与声发射试验,对相同级配的泥岩、灰岩及砂岩3种岩性散体矸石在侧限压缩条件下的变形特征、破碎特征及不同压缩阶段的声发射特征进行了研究。结果表明:在加载初期,散体矸石的应变随时间的变化曲线存在直线上升段,并且在此阶段,不同岩性矸石在相同时间内的应变相同;根据岩石的应变特征及弹性模量变化特征将岩石的压缩变形过程划分为压缩阶段、强化阶段及稳定阶段,在应力水平足够大的情况下,较为软弱的散体矸石反而拥有更大的弹性模量;在不同阶段散体矸石的累计计数曲线及累计能量曲线均表现出不同的变化特征,在稳定阶段,砂岩的累计计数曲线表现为直线上升,砂岩的累计能量曲线及其余2种岩性的累计能量曲线及累计计数曲线均表现平稳缓慢增长,并逐渐趋于水平;压缩后,散体矸石的级配曲线表现出阶段性变化特征,并且强度越大的矸石,其大颗粒破碎越不充分。 相似文献
5.
对上海市某固废焚烧厂产生的炉渣进行了不同最大竖向压力下(即200~3 200 k Pa)的压缩试验,对所有试样在试验前后进行了颗粒大小分析试验。由试验结果可知,施加的最大竖向压力小于试样的屈服应力时,压力对压缩后试样的颗粒级配曲线影响不大;若最大竖向压力大于试样的屈服应力,炉渣颗粒会发生较明显的破碎,压力对压缩后试样的颗粒级配曲线影响较大。此外,炉渣试样在试验过程中易发生破碎的粒径主要集中在最大粒径组。最后,用Hardin模型对试验炉渣的破碎特性进行了分析。 相似文献
6.
为研究不同级配矸石压缩过程中应变与能量的关系及声发射规律,本文借助MTS815.02岩石力学电液伺服压力机与PCI-2声发射测试分析系统,对6种级配的矸石进行侧限压缩试验,建立矸石应力应变与AE能量、AE事件等声发射参数之间的关系。试验结果表明:1)连续级配矸石的抗变形能力较强,且粒径组成越均匀,承载压缩率越低。2)不同级配的矸石承压破碎后,矸石粒径组成相似,且小粒径矸石占比越高,破碎率越低。3)应变速率较快时,声发射能量较为活跃,大粒径矸石占比越高,声发射累计能量越高,说明声发射累计能量主要由破碎型AE贡献。4)不同级配的矸石在压缩过程中,应变与声发射能量均有较好的对应关系,且在不同阶段内均可拟合为一次函数。 相似文献
7.
以某露天矿散体云母片岩为研究对象,对散体岩石物料开展不同级配和含水率条件下的击实试验,分析散体物料的击实特性,以及最大干密度、最优含水率和孔隙比随粗颗粒含量的变化关系;在此基础上,引入Bg颗粒破碎指标,探讨击实过程中散体颗粒的破碎特性。研究表明:1)随粗颗粒含量的增加,散体云母片岩的最大干密度呈现先增大后减少的非线性变化关系,最优含水率和孔隙比则相反;2)当粗颗粒含量为60%~70%时,最大干密度值出现峰值,且试样含水率和孔隙比最小,说明该级配条件下散体物料压实度最好;3)当粗颗粒含量在10%及其以下时,在相同击实功作用下颗粒将不再发生破碎,与此同时,破碎率也不会随着含水率的改变而发生变化;4)粗颗粒含量和含水率是影响颗粒破碎率的两个重要因素,但相对于含水率而言,粗颗粒含量对破碎率的影响要更加显著。 相似文献
8.
采动影响下陷落柱内部破碎岩体极易发生二次破坏,造成孔隙度和分形维数同时改变,致使其渗透率突变而引发突水灾害。基于此,现场开展陷落柱取样,按相同质量比配制陷落柱和石灰岩试样,测试并分析其孔隙度、分形维度以及渗透率在有侧限单轴压缩条件下的变化影响规律。研究表明:1)陷落柱和石灰岩试样的孔隙度均随轴压的增大呈指数衰减式减小,但陷落柱试样孔隙度的减小幅度比略大于石灰岩;2)当轴压小于6 MPa时,破碎岩体分形维数随轴压变化明显,尤其是陷落柱试样,其分形维数变化率可达18.5%,而石灰岩仅为9.3%;3)引入分形维度对破碎岩体渗透率与孔隙度的表达式进行修正,较好地描述了陷落柱在不同轴压下渗透行为的演化特征。 相似文献
9.
10.
综合利用MTS816.03试验系统与自制的破碎岩石压缩装置进行了不同岩性饱和破碎岩石的压缩试验,分析了岩性、轴向应力、粒径配比和加载速率4种影响因素下试样的压缩变形与分形特性。得出以下结论:1)矸石、泥岩和砂岩试样的压缩过程相似且可分为2个阶段,即为0~4MPa的快速变形阶段和4 MPa后的缓慢变形阶段;而灰岩试样的压缩过程变形速率均匀。2)在相同粒径配比条件下,随着轴向应力的增大,砂岩分形维数单调增大,岩石颗粒破碎程度加剧。轴向应力与分形维数之间关系可用指数函数拟合。3)在试样压缩过程中,Talbol幂指数越大,试样轴向位移越大;加载速率越大,试样轴向位移越小。4)在12 MPa轴向应力下,Talbol幂指数越大,试样压缩后的分形维数增量越大,被压碎的岩石颗粒越多;加载速率越大,试样分形维数越大,破碎程度越低。 相似文献
11.
为了深入研究深部高应力下充填体受压变形的力学行为,选取浓度为70%,灰砂比1∶10,养护龄期分别为14d、28d、56d的分级尾砂胶结充填体开展不同应力加载级别下的侧限固结实验,结果表明:其轴向压缩量随着应力加载级别的提高逐步增大,与轴向应力呈现对数函数关系;其轴向应变与应力之间呈现二次函数关系。 相似文献
12.
为探求破碎岩体颗粒破碎及渗透率演化规律,对饱和破碎岩石进行侧向受限下的压缩和渗透试验,利用显微CT观察试样内部的孔隙结构形态,引入相对破碎率定量研究岩石颗粒的破碎规律,并分析其与孔隙度和渗透率之间的关系。试验结果表明,颗粒破碎在压实过程中普遍存在并持续改变试样的粒度分布,在轴向应力达到2 MPa时,细小颗粒(0~2.5 mm)大量出现,占最终增加量的44.6%,同时大颗粒(12~15 mm)明显减少,占最终减小量的45.1%;而应力升至12 MPa后,小颗粒(0~2.5 mm和2.5~5 mm)小幅变化,其余各粒径区间内岩石颗粒的质量变化微弱。相对破碎率和渗透率的变化范围分别为0~0.369 3和3.48×10~(-14)~67.16×10~(-14)m~2,且两者的变化过程均可分为2个阶段,即当轴向应力小于4 MPa时,相对破碎率快速增大,占总增幅的65.6%~74.1%,渗透率快速减小,占总降幅的84.4%~91.1%;而当轴向应力大于4 MPa时,相对破碎率缓慢增大并趋于稳定,渗透率缓慢减小并趋于稳定。渗透率与相对破碎率之间关系可用二次多项式函数拟合,相对破碎率可作为评估渗透率的有效参量。初始粒径配比对渗透率有明显影响,在相同轴向应力下,Talbot指数越大,渗透率越小;而初始粒径配比对相对破碎率几乎无影响。 相似文献
13.
针对来自西安市某工程基坑的原状黄土试样进行侧限条件下的增湿变形试验,基于孔隙比、干密度、湿陷系数、净竖向应力等关键指标来分析原状黄土的增湿变形特性.经实验研究发现,侧限条件下的原状黄土净竖向应力达到400 kPa的情况下,湿陷系数达到最高水平. 相似文献
14.
矸石充填体在承压过程中力学性能受充填体尺寸的影响较大,实验室力学参数测试结果很难反映工程实际情况。为研究破碎矸石充填体侧限承压条件下的力学性能尺寸效应,借助实验室试验和颗粒流数值模拟,从宏-细观尺度分析了破碎矸石试件的直径与径高比对其承载性能的影响。结果表明:试件直径对其宏观力学性能影响显著,随着试件直径增大其抗变形能力明显减弱;破碎矸石的孔隙率变化量随试件直径增大而增加;其压缩过程中试件两侧的矸石块发生挤压破碎,细颗粒逐步填充至试件中部,颗粒配位数随试件的可变形空间增加而增大;在应力加载阶段,颗粒逐渐破碎,颗粒力链由“环状力链”演化为“柱状力链”,平均接触力变化率表明体积大的试件更易达到抗压缩变形能力极限;矸石试件主要以拉伸破坏为主,矸石块的破碎程度随试件尺寸增加而增大。研究成果对矿山充填开采的充填物料选择具有重要意义。 相似文献
15.
16.
为了更好的表征煤体强度特性,根据黎金格的新表面学说,提出了1种基于颗粒压缩实验的破碎比功测定方法;基于该方法,对阳泉矿区原生煤和不同类型构造煤的破碎比功进行了系统性测定。测定结果表明:阳泉矿区构造煤的破碎比功介于18.14~87.39 J/m2,比原生煤(约1 098.46 J/m2)低1~2个数量级;同时,碎粒煤的破碎比功(64.26~87.39 J/m2)明显大于糜棱煤(约18.14 J/m2),为糜棱煤的3.54~4.82倍。 相似文献
17.
侧压作用碎煤体变形特征复杂,通过对2组14个破碎煤体试件进行相同粒径不同初始侧压与不同粒径相同初始侧压作用下压缩变形试验,分析了侧压作用破碎煤体压缩变形轴向应力-应变曲线特征,确定了初始侧压、碎煤粒径对碎煤轴向变形及变形历时影响,研究了变化侧压与轴向应变关系。结果表明:随着轴向应力增加,碎煤应变呈增加趋势,初始侧压越大,碎煤轴向应力-应变曲线越光滑,碎煤轴向应变与变形历时越小,初始侧压与碎煤轴向应变、变形历时呈负指数关系;而随着碎煤粒径增大,碎煤轴向应力-应变曲线斜率与平滑程度减小,碎煤粒径与碎煤轴向变形、变形历时分别呈线性与指数增加趋势;随着碎煤轴向应变增加,变化侧压表现出增大趋势,初始侧压越大,碎煤变化侧压-轴向应变关系曲线斜率越小,而碎煤粒径越大,碎煤变化侧压-轴向应变曲线斜率越大,曲线加速趋势越明显,合理初始侧压对碎煤变形控制作用显著。 相似文献
18.
开展超高水充填材料应力应变关系研究对准确了解充填体与围岩相互作用关系,选取合理的采煤工作面采空区充填体强度和材料配比具有重要意义。根据不同经典理论模型的本构关系特征,结合常用的3种水灰比超高水充填材料在侧限压缩条件下的应力应变曲线,获得了材料变形过程信息。基于Poyting-Thomson模型,引入损伤变量,构建出可描述超高水充填材料应力应变关系的M|D|H理论模型,并给出了理论模型的解析解,对试验全过程曲线进行辨识,确定了模型中的相关参数,实现了对超高水充填材料变形过程的理论描述。结果表明:改进的Poyting-Thomson模型(M|D|H模型)理论值与试验结果吻合较好,能够有效描述侧限压缩条件下超高水充填材料从弹性变形到应变软化再到应变硬化的整体变形特征。 相似文献
19.
20.
《煤矿开采》2016,(6):15-17
矸石充填材料的粒径级配对其压缩性能有较大的影响。将粒径100mm以下矸石进行分级,按照中等粒径占比基本相同、大粒径占比逐渐增大、小粒径占比逐渐减小的原则设计了6组不同粒径级配方案,在模拟200m埋深覆岩压力条件下,采用内径405mm钢制大容器装载高度为250mm的矸石充填材料进行了压缩实验。结果表明矸石充填材料压缩过程可分为初步压实、破裂压密和整体稳定压实3个阶段,压缩量随轴向压力增加呈幂指函数关系增长,压缩量增加速率随轴向压力增加而减小,相同压力下压缩量随试样中小粒径占比减小而增加。得出了本实验条件下矸石充填材料压缩量(S)与小粒径占比(p)的关系式:S=111.57-0.70p。 相似文献