首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
通过MSC.Marc焊接数值模拟研究了屈服强度为700 MPa级的60 mm厚环形件(外径1600 mm,内径1200 mm)分段拼焊的工艺方法。试验验证表明,采用"X形非对称坡口,一次交错对称施焊"工艺,焊接线能量9~12k J/cm,产品的焊接变形量可控制在3 mm以内,力学性能与母材相当,满足使用要求;材料利用率相对整体切割成形可提升90.6%。  相似文献   

2.
借助于力学性能试验、金相显微镜和扫描电镜等分析了热处理对纯钽再结晶组织和力学性能的影响.结果表明:对于预变形10%的1 mm厚和预变形20%的1.6 mm厚的薄板试样,900℃保温15、30、45 min退火处理后,晶粒尺寸细化效果不明显;预变形和退火处理使两者硬度和抗拉强度显著提高,伸长率则大幅降低.随保温时间延长,1 mm厚试样的抗拉强度和屈服强度逐渐提高,而1.6 mm厚试样的抗拉强度先降低后升高,伸长率均依次降低.断口形貌的分析与力学性能结果一致.  相似文献   

3.
某大型工程需对高强韧钢板S700MC进行批量焊接,为了确保焊接质量,根据其焊接工艺,对其焊接热影响区的最高硬度、焊接接头组织及综合力学性能试验研究,试验结果表明,S700MC钢热影响区组织并未出现淬硬倾向,厚10 mm钢板采用文中焊接工艺参数焊后冷裂倾向较小;接头强度及弯曲性能良好,焊接工艺可行.  相似文献   

4.
研究了课题组开发的一种新型超高强铝锂合金的组织与力学性能。结果表明:该合金具有优异的常规力学性能,典型T8热处理时抗拉强度600 MPa以上,延伸率超过10%。10 mm厚热轧板材及2 mm厚冷轧薄板T8峰时效(150℃)时析出强化相均为T1相(Al_2Cu Li)与θ'相(Al_2Cu),且2种厚度板材中析出相分数和尺寸均相当,但10 mm厚热轧板材T8峰时效抗拉强度比2 mm厚冷轧薄板高50~70 MPa。力学性能的差异主要来源于固溶处理后变形织构分数的不同;经固溶处理后10 mm厚热轧板材变形织构体积分数远高于2 mm厚冷轧薄板。  相似文献   

5.
《轧钢》2010,(2):65-65
<正>目前,700L高强度汽车大梁钢顺利走下邯钢西区2250mm热轧生产线,经检测,该产品的化学成分、力学性能和表面质量等技术指标均达到用户要求。该产品与420L、440L、510L、610L等形成汽车大梁用钢系列结构。据了解,高强度汽车大梁钢广泛应用于汽车轻量化、工程机械轻量化等行业,具有高强度、高塑韧性、优良的可焊性和冷成  相似文献   

6.
0.1 mm厚316L不锈钢薄板主要用于制作氢燃料电池的主要部件双极板.在其制作过程中,需要进行薄板搭接焊.采用单模光纤激光焊对0.1 mm厚316L不锈钢双极板进行搭接焊工艺研究,观察焊接接头正面以及截面组织形貌,并分析不同工艺参数对焊缝成形以及接头力学性能的影响.结果表明,焊缝表面质量良好,焊接接头可达到熔透连接,...  相似文献   

7.
采用低压铸造的方法成形A357合金筒形铸件,研究不同凝固条件对筒形铸件组织及力学性能的影响。砂型冷却壁厚20 mm部位二次枝晶间距平均值比壁厚10 mm部位二次枝晶间距平均值大了40%以上,冷铁冷却铸件20 mm壁厚部位的二次枝晶间距比砂型凝固同壁厚铸件的二次枝晶间距小40%以上,与砂型铸造铸件壁厚10 mm部位的二次枝晶间距相当。冷铁激冷铸件的力学性能获得显著提高,相对于薄壁铸件,壁厚铸件采用冷铁对铸件的力学性能提高的幅度更大一些。凝固条件对厚壁铸件的断裂机制有一定的影响,砂型冷却20 mm壁厚铸件断裂有穿晶断裂趋势,冷铁冷却20 mm壁厚铸件断裂时有沿晶断裂趋势。  相似文献   

8.
1 生产条件 变速箱壳体铸件材质HT200,铸件质量82kg,外形尺寸552.5mm×513mm×488.2mm,壁厚10~30mm,主要壁厚10mm,如图1.采用5t/h倒大双热风冲天炉熔炼,铁水出炉温度1400~1450℃;采用Z2140顶箱震实式造型机湿砂型造型,漏模起模,砂箱尺寸900mm×700mm×350mm;采用Z878翻台震实式制芯机,合脂砂制芯.  相似文献   

9.
为了使热轧TA10钛合金板材的塑性指标能够满足后续爆炸复合工艺的要求,对3 mm厚热轧TA10钛合金板材进行了不同温度和不同保温时间的退火热处理,研究退火温度和保温时间对其组织和力学性能的影响。结果表明,热轧态TA10钛合金板材经(700~750)℃×(30~60)min/AC热处理后可以得到较为均匀的等轴α相组织和较好的综合力学性能,满足爆炸复合用钛板的使用要求。  相似文献   

10.
在研究分析SS400带钢热变形中组织演变规律的基础上,通过优化控制轧制控制冷却工艺,并采取提高温度检测的准确性和加强层流冷却系统的维护等措施,较好地解决了唐钢1810mm生产线生产的SS400厚规格带钢的力学性能偏低问题.  相似文献   

11.
热轧带钢力学性能在线预测技术能够优化生产工艺、改善成品质量.为此,在传统数学模型的基础上,采用Bayes神经网络建立了热轧带钢力学性能在线预测新模型.介绍了基于Bayes理论方法的神经网络、数据预处理方法、数据平台的搭建,力学性能在线预测模型输入参数的选择,以及基于某1 780 mm热轧带钢生产线,对以SPA-H、51...  相似文献   

12.
对Ti微合金化700 MPa级高强钢钢卷头、中、尾部力学性能、金相组织及析出物进行了研究。结果表明:钢卷头、中、尾部力学性能波动的主要原因是钢卷内外圈析出强化效果不同而导致的。为此,在生产薄规格Ti微合金化700 MPa级高强钢时,采用U形冷却工艺,将钢卷最内圈15 m内的带钢卷取温度提高15~20 ℃,将最外圈15 m内的带钢卷取温度提高10~15 ℃,可使钢卷最内圈强度提高约40 MPa,钢卷最外圈强度提高约20 MPa,有效改善了带钢通卷性能均匀性,提高了通卷性能合格率。  相似文献   

13.
IF钢铁素体轧制工艺具有较多优点,为了稳定生产IF钢薄规格热轧产品并满足最终产品的性能要求,需要根据产线设备能力、设备间距等情况,制定合理的热轧工艺参数。基于梅山钢铁股份公司热轧厂IF钢铁素体轧制工艺实践及试验室模拟试验,获得了不同粗轧终了温度、卷取温度对应热轧产品的显微组织与力学性能;考虑不同精轧入口温度、终轧温度与{001}<110>织构平均取向密度关系,以及节能降耗的需要,结合力能参数、设备相对位置,制定出关键工艺参数:板坯出炉温度1 050~1 150 ℃、粗轧开轧温度1 070 ℃、粗轧终了温度920 ℃;精轧入口温度852 ℃,2.0 mm≤h≤3.5 mm时精轧终轧温度800 ℃;h>3.5 mm时精轧终轧温度810 ℃;卷取温度700 ℃。采用上述工艺参数批量生产出h≤2.5 mm薄规格产品,且全部满足下游各种家电板要求的深冲性能。  相似文献   

14.
朱书成 《轧钢》2011,28(5):9-10
针对大厚度高层建筑用钢生产难度大、产量少等问题,通过优化成分、轧制及热处理工艺,试制了120mm大厚度Q390GJC Z35高强度钢板。结果表明,产品组织均匀、韧窝细小,力学性能及抗层状撕裂性能均满足国家标准要求。  相似文献   

15.
含Ti不锈钢大锻件研制   总被引:2,自引:2,他引:0  
采用EAF+AOD+ESR法研制了有特殊要求的OCr18Ni10Ti大锻件33件。单件最重8.3t,最大管板Φ1850mm×260mm(5.5t),是目前最大的含Ti不锈钢锻件。所有产品一次验收合格。本文着重讨论了Ti含量控制及含Ti钢的均匀性、纯净度、晶粒度、α相和高温力学性能等问题。  相似文献   

16.
Reducing energy consumption and emissions are crucial environmental concerns. While industry requires high-quality sheet steel for forming, the production of this steel by the steel industry consumes huge amounts of electric energy and emits considerable CO2. Conventionally, hot rolling process parameters have been determined empirically to achieve the desired mechanical properties, with the quality of the hot-rolled products having priority over energy consumption. We have developed a novel optimization system that evaluates both energy consumption in the sheet manufacturing process and the mechanical properties of the hot-rolled products. This paper describes the optimization of hot rolling strategies based on the estimation of energy consumption and prediction of mechanical properties.  相似文献   

17.
AG700L钢主要应用于汽车大梁等重要承重结构件。通过在Gleeble-3800热模拟试验机上采用双道次压缩试验,研究了AG700L钢在应变速率为0.01~2 s-1、变形温度为950~1 050℃、道次间隔时间为10~120 s不同条件下的亚动态再结晶行为。结果表明:AG700L钢道次间隔内亚动态再结晶行为受变形温度、应变速率和道次间隔时间的影响显著;随变形温度的升高,亚动态再结晶体积分数先缓慢增加,然后迅速增加;随应变速率的增加,亚动态再结晶体积分数先迅速增加,然后趋于平稳;随道次间隔时间的增加,亚动态再结晶体积分数明显增加。随变形温度的升高、应变速率的增加以及道次间隔时间的延长,变形后AG700L钢的晶粒尺寸显著增加,组织变得更加均匀。同时,建立了AG700L钢的亚动态再结晶动力学模型,为其实际生产轧制工艺的制定与优化提供了依据。  相似文献   

18.
Liu  Li-min  Shan  Zhong-de  Liu  Feng  Lan  Dun 《中国铸造》2018,15(5):343-350
A multi-material hybrid patternless moulding process for complicated castings has been proposed. Moulding sands used in the hybrid moulding process include silica sand, ceramic sand, chromite sand, zircon sand, and steel shot sand. Experimental method was used to study the effects of moulding sands on the temperature field, mechanical properties, and dimensional precision of the iron castings. Under the condition that the wall thickness on different sides of the casting is the same, when the wall thickness is greater than 10 mm, the heat storage capacity of the moulding sands from strong to weak is steel shot sand, zircon sand, chromite sand, ceramic foundry sand, and silica sand. Tensile strength of the obtained castings from high to low is zircon sand, chromite sand, steel shot sand, ceramic sand, and silica sand. Contraction rate of the obtained castings from high to low is steel shot sand, zircon sand, chromite sand, silica sand, and ceramic sand. Therefore, steel shot sand and zircon sand can be used as chilled sand, and even can be used instead of cold iron when the casting wall thickness is greater than 10 mm. Zircon sand and chromite sand can be used to obtain high mechanical properties, and silica sand and ceramic sand can be selected to obtain high dimensional precision of the castings. Finally, a typical iron casting piece was tested by experiment using the hybrid moulding process. Excellent performances of iron castings confirm the feasibility of the hybrid moulding process.  相似文献   

19.
采用正交试验方法研究了3379BA1汽轮机叶片钢热处理工艺与力学性能之间的关系。结果表明:影响试验钢力学性能的因素先后顺序为回火温度、淬火温度、回火时间、淬火时间,得出了最优热处理工艺参数为1050 ℃淬火(保温60 min,油冷)后在700 ℃回火(保温120 min,空冷)。通过试验验证,经最优热处理工艺处理后试验钢可以满足各项性能要求,较工艺优化前冲击吸收能量平均值提升约10 J,屈强比达87.3%。  相似文献   

20.
中厚板轧制过程的数值模拟   总被引:1,自引:0,他引:1  
以L245级管线钢材料的热物性参数(密度、泊松比、杨氏模量、热膨胀系数、热导率和比热)和热模拟压缩实验获得的高温变形时应力—应变曲线等试验数据为基础,在MSC.Marc软件中建立了该钢种材料数据库,并建立了中厚板多道次轧制过程的二维有限元模型。以铸坯厚度为220mm、成品厚度为25.4mm的热轧过程为例,通过对轧件与轧辊接触面间换热系数采用取不同常数值的方法,并依据其生产时所采集的各道次相关工艺参数,对该轧件全道次热轧过程进行了数值模拟,将各道次的轧制力计算值与实测值进行了分析比较,确定了轧件与轧辊间接触面换热系数的最佳值。利用本文模型对厚度为180mm的轧件单道次轧制过程进行了数值模拟,研究了不同变形工艺参数(轧制温度、道次压下率和轧制速度)对变形区等效应变和等效应力的影响。结果表明,在轧机设备能力及生产现场条件允许时,高温粗轧阶段纵轧道次可采用低速大压下率进行轧制成形,使变形较充分地向轧件芯部渗透,从而使钢板获得细小均匀的晶粒组织,有效改善钢板的强韧性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号