首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
采用水热法制备了钒酸铋催化剂,以罗丹明B为目标降解物,对催化剂的光催化性能进行了测定。考察了水热反应pH、反应温度、反应时间对催化剂光催化性能的影响,实验得出制备钒酸铋催化剂的最佳水热反应条件:水热反应pH为7、反应温度为100℃、反应时间为8 h。在最佳水热反应条件下,投放5 mg的钒酸铋催化剂,对5 mL初始质量浓度为10 mg/L罗丹明B溶液的光催化降解率高达96.5%。最后利用X射线衍射(XRD)表征手法,对最佳水热反应条件下制备的钒酸铋催化剂的结构进行了表征,证明制得的钒酸铋催化剂纯度较高。  相似文献   

2.
通过水热法制备了棒状钒酸铋/氧化石墨烯(BiVO4/GO)复合可见光光催化剂。用扫描电子显微镜、X射线衍射、Raman光谱和紫外–可见漫反射光谱表征了所制备的样品。在可见光(λ≥420nm)光照下光催化降解亚甲基蓝水溶液来检测样品的活性。结果表明:氧化石墨烯的加入有效地提高了BiVO4的可见光光催化活性,含1%(质量分数)的氧化石墨烯的复合光催化剂活性最好。BiVO4/GO活性增强的原因是氧化石墨烯能快速捕获并转移光生电子,有效提高BiVO4光生载流子的分离效率,从而提高其光催化活性。  相似文献   

3.
采用电化学沉积法在FTO玻璃上制备了具有纳米多孔网状结构的氧化铜/钒酸铋薄膜。利用X射线衍射(XRD)、拉曼光谱(Raman)、扫描电子显微镜(SEM)、能谱分析(EDS)对薄膜做成分及结构分析,采用线性伏安扫描(LSV)、频率阻抗测试(EIS)对薄膜做光电性能测试。氧化铜的掺入能够提高钒酸铋薄膜的光电性能,在1.23 Vvs.RHE时,40 mmol/L 氧化铜/钒酸铋薄膜的光电流密度为1.39 mA/cm2,比纯钒酸铋薄膜的光电流密度(0.7 mA/cm2)增大了1倍左右。结果表明,纳米多孔的网状结构,提高了薄膜对光的利用效率,同时也增加了薄膜和电解液的接触面积。氧化铜和钒酸铋复合形成异质结后,抑制了光生电子-空穴对的复合,从而提高了氧化铜/钒酸铋薄膜的光电流密度。  相似文献   

4.
钒酸铋是一种具有代表性的新型半导体材料,展现出较好的可见光光催化活性。为了进一步提高光催化活性,采用离子掺杂、半导体复合和表面修饰等方法对其进行改性合成了钒酸铋基光催化材料。虽然这些方法能够明显改善光能利用效率,扩大光谱响应范围,但是单一方法改性的钒酸铋基光催化材料的光催化效率还不高。有研究表明多种方法共同修饰改性能够有效提高钒酸铋光催化效率,将成为重点研究方向。  相似文献   

5.
采用水热反应法并改变反应条件制备不同形貌和晶体结构的BiVO4可见光催化剂,并探讨不同形貌BiVO4的形成机制及其光催化活性的影响因素。借助X-射线衍射(XRD)、扫描电子显微镜(SEM)及固体紫外-可见漫反射光谱(DRS)对产品进行表征,并在可见光(λ〉420 nm)照射下考察其降解亚甲基蓝(MB)的光催化性能。结果表明,高温更有利于单斜型钒酸铋的生成,反应初始pH值对钒酸铋的形貌影响较大。反应过程中,前驱液中的颗粒通过溶解再结晶、定向聚集自组装、熟化过程最终形成不同形貌的钒酸铋颗粒。钒酸铋的光催化降解速率主要受其晶粒粒径和晶体微观应变的影响,晶粒粒径越大,微观应变越小,结晶度越好,降解速率越高。  相似文献   

6.
以硫酸氧钛、偏钒酸铵和氯化亚铁等试剂为原料,制备磁性二氧化钛钒酸铋(Fe3O4-TiO2-BiVO4)复合光催化剂,通过扫描电子显微镜(SEM)、X射线衍射(XRD)、傅立叶红外光谱(FT-IR)和紫外-可见漫反射光谱(UV-Vis DRS)对其进行表征。以刚果红为模拟降解对象,在可见光照射下,使用质量均为0.05 g的磁性二氧化钛钒酸铋对浓度20 mg·L-1的刚果红溶液进行光催化降解,结果表明,在自然光光照240 min条件下,降解率达70.0%。  相似文献   

7.
采用水热法制备了钒掺杂磷酸铋/蒙脱石(BiP_(1–x)V_xO_4/MMT)复合材料,通过X射线衍射、透射电子显微镜、Fourier变换红外光谱和紫外可见吸收光谱表征复合材料的结构和组成、形态特征,并以其为催化剂进行光催化脱硫,考察了不同掺杂摩尔比x对复合材料的光催化脱硫性能的影响。结果表明:MMT的加入避免了活性组分的团聚,同时表面负载的BiP_(1–x)V_xO_4固溶相与BiVO_4析出相可形成紧密结合的异质结,提高了可见光的利用率,促进了光生电子-空穴对的分离。当x=0.6时,可见光照射3 h,BiP_(1–x)V_xO_4/MMT复合材料对模拟汽油的脱硫率可达97%。  相似文献   

8.
为综合二氧化钛、钒酸铋光催化剂的性能,制备了二氧化钛-钒酸铋复合光催化剂,并以布洛芬为目标降解物,与二氧化钛、钒酸铋光催化剂的光催化性能进行了对比。以钛酸丁酯为原料,加入无水乙醇、盐酸、去离子水,采用凝胶法制备了二氧化钛光催化剂;以五水硝酸铋、偏钒酸铵为原料,加入浓硝酸、氢氧化钠,制备了钒酸铋、二氧化钛-钒酸铋复合光催化剂。此制备方法简便、高效。在可见光照射下,使用二氧化钛、钒酸铋、二氧化钛-钒酸铋3种光催化剂对布洛芬进行光催化降解,并将3种光催化剂分别联合过氧化氢对布洛芬进行光催化降解,考察了3种光催化剂的光催化性能。结果表明,未加入过氧化氢条件下,3种光催化剂的光催化性能由大到小的顺序为二氧化钛-钒酸铋、二氧化钛、钒酸铋;加入电子捕获剂过氧化氢后,提高了光催化剂降解布洛芬的效率,减少了电子-空穴对的复合速度,并且3种光催化剂的光催化性能由大到小的顺序为二氧化钛-钒酸铋、钒酸铋、二氧化钛。  相似文献   

9.
邱天  杨浩 《广东化工》2016,(9):14-15
将低温水热法制备的单斜晶型BiVO_4作为载体,采用光还原法获得催化活性提升的Ag/BiVO_4复合材料。通过X射线衍射(XRD)、X射线能谱(EDX)、紫外可见漫反射(UV-DRS)表征方法检测Ag/BiVO_4材料的组成和光学性质,测试了Ag/BiVO_4在可见光照射条件下对罗丹明B(Rh B)的降解性能。结果表明,10 at%Ag/BiVO_4复合材料表现出最佳的光催化活性。本工作合成条件温和、步骤简便,并对银负载钒酸铋光催化剂的催化活性机理进行讨论。  相似文献   

10.
戈磊  崔立山 《硅酸盐学报》2008,36(3):320-324
通过浸渍法制备了新型可见光活性的氧化钯(PdO)/钒酸铋(BiVO4)复合光催化剂.采用X射线衍射、扫描电子显微镜、X射线光电子能谱(X-ray photoelectron spectroscopy,XPS)、紫外-可见吸收光谱等测试手段对复合光催化剂的物理和光学性质进行了表征.在可见光(λ>400nm)照射下考察了PdO/BiVO4样品降解甲基橙的光催化性能.结果表明:PdO/BiVO4光催化剂为单斜相结构,晶粒形貌呈十字花或球形.XPS结果显示:复合光催化剂中掺杂的钯(Pd)元素是以PdO的形式存在的.与纯BiVO4样品相比,复合光催化剂可见光降解甲基橙的活性显著增强.这种新型复合光催化剂的光催化性能提高的原因可能是由于催化剂中光生载流子的高效分离造成的.  相似文献   

11.
以五水合硝酸铋[Bi(NO33·5H2O]为铋源、二水合钨酸钠(Na2WO4·2H2O)为钨源通过水热法制备出多孔钨酸铋(Bi2WO6),并以纳米板条堆叠形成椭球结构的类石墨相氮化碳(g-C3N4)为基底通过溶剂热法在原位还原金属铋(Bi)的同时制备出具有Z型异质结构的g-C3N4/Bi/Bi2WO6(CN/B/BWO)复合光催化材料。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、氮气吸附-脱附等温线(BET)、紫外-可见吸收光谱(UV-Vis)和光致发光(PL)光谱等检测手段对制备的样品进行了表征。结果表明,金属铋可以作为类石墨相氮化碳和钨酸铋之间的电荷转移媒介,其产生的表面等离子体共振(SPR)效应可协同增强光生电子-空穴对的分离效率和载流子的迁移率,从而提升样品的光催化活性。采用350 W氙灯照射30 min,样品CN/B/BWO-0.7对盐酸四环素(TC-H)的降解率达到99.94%,并对其降解机理进行了探讨。  相似文献   

12.
In this work, BiVO4 powders were synthesized by a sol-gel method, and the BiVO4 gels with different calcination temperature were investigated by X-ray diffraction (XRD). Absorption range and band gap e...  相似文献   

13.
殷楠  刘婵璐  张进 《无机盐工业》2020,52(10):161-165
以三聚氰胺和四水合钼酸铵为前驱体,采用水热法制备了MoO3/g-C3N4复合光催化剂。利用X-射线衍射仪(XRD)、红外光谱仪(FT-IR)、扫描电子显微镜(SEM)、X射线光电子能谱仪(XPS)及紫外-可见漫反射仪(DRS)等对制备的样品进行了表征。表征结果显示,棒状的三氧化钼负载在层状C3N4表面,复合材料的光吸收能力有一定的增强。材料可见光催化降解亚甲基蓝(MB)溶液的实验表明,三氧化钼和g-C3N4所复合产生的异质结具有较好的吸收光强度及催化降解性能,尤其是5%(质量分数)MoO3/g-C3N4复合材料光催化降解率最好,达到95.7%,高于纯三氧化钼和g-C3N4。自由基与空穴捕获实验表明,·O2-是光催化反应中的主要活性物种。MoO3/g-C3N4复合材料在4个循环周期内表现出了优异的稳定性。  相似文献   

14.
褚佳欢  汤嘉成  朱媛  张进 《无机盐工业》2022,54(11):131-136
结合热缩聚法和水热法制备了g-C3N4/Bi2MoO6复合光催化剂,利用X射线衍射(XRD)、傅里叶红外光谱(FT-IR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、氮气吸附-脱附曲线、紫外-可见漫反射光谱(UV-Vis DRS)、光致发光光谱(PL)等分析测试技术对材料的结构和性能进行了表征,研究了材料光催化降解罗丹明B(RhB)的效果。结果表明,与纯Bi2MoO6相比,g-C3N4/Bi2MoO6复合材料提高了对可见光的吸收能力,减小了带隙宽度,在可见光激发下提高了降解RhB的光催化活性。其中,5% g-C3N4/Bi2MoO6复合材料对RhB的降解率最高,在可见光照射180 min对RhB的降解率为93%;而同样条件下Bi2MoO6对RhB的降解率为58%。重复性实验表明,复合材料在RhB光降解过程中是稳定的,具有较好的应用潜力。  相似文献   

15.
以偏钒酸铵和碳酸铋为原料,用NaOH调节体系pH,水热法合成钒酸铋(BiVO4)光催化剂。利用XRD和UV-Vis漫反射对样品的晶型结构和光吸收特性进行表征分析。以罗丹明B为目标降解物,卤素灯(λ>400 nm)为光源,探讨水热温度、水热时间对合成BiVO4催化剂的可见光催化活性影响。结果表明,在水热温度为200 ℃、水热时间为8 h的条件下合成的钒酸铋光解效率最高。实验还研究了罗丹明B水溶液pH、催化剂投加量对光催化罗丹明B降解率的影响。结果表明,在罗丹明B水溶液pH为3、初始质量浓度为10 mg/L、每60 mL溶液催化剂投加量为0.4 g时能达到较好的光催化效果,反应2 h后降解率可达97%。  相似文献   

16.
为提高传统光催化材料BiOBr和UiO-66-(COOH)2的性能和对可见光的吸收强度,以及它们的光催化活性和光催化效率,通过简单的溶剂热法制备了一种新型复合光催化剂BiOBr/UiO-66-(COOH)2。运用X射线衍射光谱(XRD)、扫描电镜(SEM)、透射电镜(TEM)、红外光谱(FT-IR)、光致发光(PL)光谱、N2吸附-脱附、紫外-可见漫反射光谱(UV-Vis DRS)和电化学等手段对其进行表征,并对其光催化降解甲基橙的效率进行了研究。结果表明,相对于单一的BiOBr材料,与UiO-66-(COOH)2复合之后的BiOBr/UiO-66-(COOH)2催化剂保留了原有材料的结构,相应的比表面积增大,对可见光的吸收强度增强。将BiOBr/UiO-66-(COOH)2用于光催化降解甲基橙,在氙灯照射120 min后,甲基橙的降解率达到70%,分别约为纯UiO-66-(COOH)2和BiOBr的3.68倍和1.43倍,光催化活性显著提高,光催化降解过程符合一级反应动力学规律。  相似文献   

17.
黄夏梦 《无机盐工业》2021,53(4):112-116
以自制的铋酸钾(KBiO3)为前驱物,采用低温水热法制备七氧化四铋(Bi4O7),再利用氢溴酸原位离子刻蚀法首次成功制备了Bi4O7/BiOBr复合物。通过X射线衍射(XRD)和扫描电子显微镜(SEM)分别观测了样品的物相和形貌特征,复合相具有比二者单相更佳的可见光降解罗丹明B(RhB)的性能,最高可达到30 min内降解86.9%;紫外可见漫反射光谱(DRS)和光致发光光谱(PL)分别证明了其性能的提升是由于复合相拥有更广的光学响应范围和更低的光生载流子复合效率。超氧自由基和空穴是该体系光催化降解过程中的活性物质,并由此提出了一种可能的光催化降解机制,且复合相比单相Bi4O7具有更好的光催化降解稳定性。  相似文献   

18.
聚合氮化碳(CN)具有可见光响应、化学性质稳定、廉价易得、无毒等优点,在光催化领域得到了广泛的研究和应用,但是存在比表面积较小、电子-空穴对易复合等不足之处,严重限制了其光催化性能。以尿素和常见的两种钴盐[CoCl2和Co(NO3)2]为前驱体,通过一步煅烧法制备了钴(Co)掺杂CN,研究了不同Co源对材料光催化还原二氧化碳(CO2)性能的影响。实验证明,由适量氯化钴(CoCl2)为Co源得到的Co掺杂CN,其光催化还原CO2生成一氧化碳(CO)的速率可由纯CN的82.7μmol/(g·h)提升至374.5μmol/(g·h),同时CO选择性由79.1%提高至88.5%;而以硝酸钴[Co(NO3)2]为Co源得到的Co掺杂CN倾向于产氢,其光催化还原CO2性能基本不能得到提升。通过对光催化剂进行电感耦合等离子体(ICP)、X射线衍射(XRD)、傅里叶红外光谱(FT-IR)、X射线光电子能谱(...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号