首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
川西某伟晶岩型锂多金属矿主要目的矿物为锂辉石,伴生有少量的铌钽铁矿,脉石矿物主要有长石,石英和云母类矿物。在磨矿细度-0.074mm含量72%的条件下,采用一粗一扫三精的浮选闭路流程,最终获得了Li2O品位5.80%、Nb2O5含量530g/t、Ta2O5含量215g/t的含铌钽锂精矿,Li2O回收率为91.76%,Nb2O5回收率为91.05%、Ta2O5回收率为90.83%,实现了锂铌钽的混合浮选。  相似文献   

2.
新型捕收剂浮选锂辉石矿的试验研究   总被引:4,自引:0,他引:4  
采用新型螯合类捕收剂替代传统的氧化石蜡皂 ,实现锂辉石与石英及长石的浮选分离 ,不仅可显著降低药剂成本 ,而且能大大提高锂辉石与石英及长石矿物间的分选性 ,从而提高锂辉石选矿指标  相似文献   

3.
针对四川某锂辉石矿的矿石性质, 采用碱法不脱泥工艺进行了锂辉石与脉石的分离。探索了调整剂用量和作用时间对锂辉石浮选的影响, 结果表明, 氧化石蜡皂与另外两种阴离子捕收剂组合而成的新型组合捕收剂OPS-3对浮选锂辉石具有较好的选择性和捕收能力。采用OPS-3进行闭路试验, 最终得到Li2O品位为5.86%、回收率为81.30%的锂辉石精矿。  相似文献   

4.
川西伟晶岩型锂辉石矿中锂辉石普遍结晶较大、易于解离且在碎磨过程中容易细化,而入选锂辉石矿样的粒度对浮选结果具有很大的影响,采用选择性磨矿—强化浮选的工艺来加强对锂辉石的回收。试验确立了最佳的磨矿条件:钢球球径配比制度为35 mm∶30 mm∶25 mm∶15 mm=2∶5∶3∶7,钢球充填率为30%,磨矿时间为8 min,磨矿浓度为65%。在这一最佳的磨矿条件下可以生产最大量的有利于锂辉石浮选分离的中粒级-74+38μm产品。磨浮选工艺闭路试验可获得Li2O品位5.81%、回收率79.52%的锂精矿。  相似文献   

5.
某锂辉石矿石Li2O品位为1.46%,矿物组成复杂,主要有用矿物为锂辉石,主要脉石矿物为石英、长石、云母等,锂辉石与石英、长石的嵌布关系密切,多呈聚粒状分布,局部分散,有的呈针状被云母、石英包裹,或呈片状、粒状等形态分布于云母裂隙中,属于复杂难选伟晶岩型锂辉石矿石。为确定该矿石的开发利用工艺,进行了选矿试验研究。结果表明,矿石在磨矿细度-0.074 mm占72.2%的情况下,采用磁选(636.94 kA/m)脱铁、浮选锂辉石工艺回收锂辉石,其中浮选以Na2CO3+NaOH作pH调整剂和脉石矿物分散剂,CaCl2作锂辉石的活化剂,TSY-15作捕收剂,经1粗2精3扫、中矿顺序返回流程处理,最终获得Li2O品位为6.02%、Li2O回收率为80.65%、Fe2O3含量为0.67%的锂辉石精矿,达到陶瓷级锂辉石精矿质量标准。  相似文献   

6.
针对海拔高、气温低地区锂辉石浮选的影响因素,开发出新型浮选添加剂,不但在常温下可提高锂精矿回收率5%以上,14℃左右的低温范围仍可取得锂精矿品位(Li2O) 6.29%、回收率84.5%开路技术指标.  相似文献   

7.
新疆某伟晶岩型锂辉石矿Li2O含量为1.41%,主要含锂矿物为锂辉石,脉石矿物主要是石英、正长石、斜长石。采用高压辊磨机直接粉碎至-0.5mm的矿样中-0.074mm粒级含量占28.54%,且锂辉石矿物单体解离度在91%以上。对-0.5mm试验矿样进行的粗粒浮选试验结果表明,粗粒锂辉石矿浮选比常规细粒浮选需要的捕收剂用量要大,且需要在相对较低的搅拌转速以及较高的矿浆浓度条件下才能获得较好的浮选指标。采用自行设计的粗粒浮选装置相对于常规挂槽浮选机可提高Li2O回收率约10个百分点。原矿以碳酸钠为调整剂、氧化石蜡皂+油酸钠为捕收剂经2粗3精1扫的闭路浮选试验,可获得Li2O品位为5.11%、Li2O回收率为70.04%的锂精矿指标,为锂辉石矿山采用高压辊磨机作为终粉磨而取代球磨机提供了可能。  相似文献   

8.
随着锂资源需求的日益增大,作为锂资源提取的主要来源,锂辉石的选别技术需要不断发展与完善。如何扩大锂辉石与脉石矿物的可浮性差异,是提高锂辉石浮选效率的关键。本文概括分析了锂辉石与脉石矿物晶面的各向异性,以及近年来锂辉石矿浮选研究的最新进展。分析表明,锂辉石解理面具有很强的各向异性和表面组分选择性溶蚀行为。调控锂辉石优势解理面比例和表面组分选择性溶蚀,以及阴阳离子组合捕收剂的使用,可进一步强化锂辉石的浮选,同时加强脉石矿物选择性抑制剂的开发,这些将成为锂辉石矿浮选工艺研究的重要方向。  相似文献   

9.
川西某低品位锂矿为伟晶岩型矿石,其有用矿物主要为锂辉石,Li_2O品位为1.20%,在目前的技术和经济条件下,该矿的开发利用具有显著的经济效益和社会效益。在磨矿细度为-74μm含量78.3%的情况下,采用一次粗选、两次扫选、三次精选、中矿顺序返回的浮选闭路流程,可获得Li_2O品位5.69%,回收率为83.06%的锂精矿。  相似文献   

10.
针对川西某伟晶岩锂辉石矿原矿性质复杂的特点,对其进行了强化浮选分离及综合利用试验研究。通过三种流程方案对比,确定最优的选别工艺"阶段磨矿-阶段选别-组合捕收剂强化浮选分离技术",可分别获得产率为5.26%的云母精矿;Li_2O品位高达6.20%,回收率为87.34%的锂辉石精矿。通过对浮锂尾矿进一步回收长石的选矿工艺流程试验,可以获得K_2O+Na_2O含量为11.33%,作业回收率为85.77%,全流程K_2O+Na_2O回收率达到50.57%,Fe_2O_3含量只有0.21%的长石精矿,在一定程度上实现了此类难选伟晶岩型锂辉石矿的综合利用。  相似文献   

11.
对某地锂辉石浮选尾矿进行长石和石英浮选分离试验,探索了无氟有酸法和有氟有酸法2种浮选工艺.氢氟酸法进行了搅拌擦洗时间、氢氟酸用量、十二胺用量和浮选时间等条件试验,在条件试验的基础上,依次进行了长石浮选开路试验和闭路试验.结果表明,通过“1粗2扫1精”闭路流程试验,可获得K2O、Na2O品位分别为4.13%、7.46%,回收率分别为98.03%、98.42%的长石精矿.对产品进行质量检查,长石精矿、石英精矿(长石浮选尾矿)均达到工业要求,实现了锂辉石浮选尾矿综合利用的目的.  相似文献   

12.
为考察某锂辉石矿浮选废水回用至生产流程的可行性及技术方案,对清水和浮选废水进行水质分析,在实验室进行浮选废水回用试验.结果表明,对于浮选尾矿不处理的浮选废水,回用前用硫酸调整pH值至中性范围,一定程度可减轻回水对浮选指标的影响.回水不进行处理,通过调整和优化浮选药剂制度,可提高锂辉石矿的浮选指标,且效果优于调整回水pH...  相似文献   

13.
为实现江西宜春花岗伟晶岩型锂辉石矿中锂、钽及长石的综合回收, 开展了选矿综合回收试验研究。研究结果表明, 该锂辉石矿石英、长石含量高, 采用高选择性药剂ZH与氧化石蜡皂组合作为锂辉石捕收剂, 可降低细泥在锂辉石表面的罩盖影响, 优化矿浆流体环境; 在原矿含Li2O为1.51%、Ta2O5为0.022%的条件下, 以氧化石蜡皂+ZH组合捕收剂浮选回收锂辉石, 采用细泥摇床重选工艺回收浮选尾矿中的钽矿物, 重选尾矿采用"弱磁选—强磁选"工艺除铁后作为长石精矿, 获得了含Li2O 5.62%、回收率为74.65%的锂辉石精矿和Ta2O5品位为18.78%、回收率为40.21%的钽精矿, 以及产率为49.16%、含Na2O 2.45%、K2O 4.60%、TFe 0.15%、白度为62.9%的长石精矿。该工艺流程选矿试验指标良好, 实现了硬岩型锂辉石矿中锂、钽和长石的综合回收。  相似文献   

14.
澳大利亚某进口锂辉石矿含有较多的矿泥,对浮选作业产生不利影响,试验采用水力沉降法、浮选法等不同方法对锂辉石矿进行预先脱泥,考察了不同方法的脱泥效果及对后续锂辉石浮选的影响。研究发现以十二烷基硫酸钠作为浮选药剂对锂辉石矿进行浮选脱泥取得了最佳的脱泥效果,脱除的矿泥量大、含锂品位低、矿泥中锂的损失小,脱泥后再浮选锂辉石,获得的锂辉石粗精矿品位有了很大程度的提高。预先脱泥后的锂辉石矿经过一次粗选两次精选三次扫选的浮选流程,可获得良好的选矿指标。闭路试验表明,该进口锂辉石矿原矿Li_2O含量为1.42%,经预先脱泥—浮选锂辉石选别流程处理后,获得的锂辉石精矿Li_2O品位为5.83%,Li_2O回收率为78.54%。  相似文献   

15.
介绍了一种基于强化预处理作业的锂矿选矿工艺,即预先脱除磁性脉石及易浮脉石后再采用新型含锂矿物捕收剂BK317?2对含锂矿物进行回收.结果表明,强化含锂矿物浮选前的脉石预处理工艺,有利于提高锂精矿Li2 O品位,与直接浮选相比,强化预处理?浮选工艺所得锂精矿Li2 O品位提升了1.31个百分点.  相似文献   

16.
研究了无传动微泡浮选槽在分选锂辉石矿时的设备性能、主要技术参数、分选技术指标及其变化趋势,通过工业试验研究发现无传动浮选槽能够较好的适应锂辉石浮选,与传统浮选机比较,锂辉石回收率提高至少2.1%,单位处理能耗节能20.6%以上。同时具有处理能力高、能耗低、自动化程度高、设备运行稳定等优点,本研究对无传动微泡浮选槽在锂辉石矿工业应用和推广具有重要的指导作用,并对解决高海拔地区浮选效率问题有着较好的示范作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号