首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
研究表明,现有的多目标进化算法在处理具有不同Pareto前沿的优化问题时难以有效平衡种群的收敛性与多样性.鉴于此,提出一种基于自适应参考向量和参考点的高维多目标进化算法(adaptive reference vector and reference point based many-objective evlolutionary algorithm, ARVRPMEA). ARVRPMEA主要利用种群稀疏性自适应调整参考向量和参考点以提高种群多样性,首先,生成均匀分布的参考向量子集和参考点子集,并利用该参考向量子集分解种群;然后,根据规模最大子种群中解的分布情况生成新的参考向量和参考点,直至满足参考向量集和参考点集规模;最后,为进一步提高种群收敛性,该算法结合指标进行环境选择以保存收敛性较高的个体进入下一代种群.实验结果表明, ARVRP算法在求解具有不同Pareto前沿的问题方面具有良好的性能.  相似文献   

2.
韩敏  何泳  郑丹晨 《控制与决策》2017,32(4):607-612
高维多目标优化问题一般指目标个数为4个 或以上时的多目标优化问题.由于种群中非支配解数量随着目标数量的增加而急剧增多,导致进化算法的进化压力严重降低,求解效率低.针对该问题,提出一种基于粒子群的高维多目标问题求解方法,在目标空间中引入一系列的参考点,根据参考点筛选出能兼顾多样性和收敛性的非支配解作为粒子的全局最优,以增大选择压力.同时,提出了基于参考点的外部档案维护策略,以保持最后所得解集的多样性.在标准测试函数DTLZ2上的仿真结果表明,所提方法在求解高维多目标问题时能够得到收敛性和分布性都较好的解集.  相似文献   

3.
高维多目标优化问题(many-objective optimization problems, MaOPs)已经普遍存在于工业和科学领域中,这类问题的目标数一般超过3个且目标之间存在冲突性。进化算法作为一种基于种群的元启发式搜索方法已经被证实能够有效求解MaOPs。近二十年来,高维多目标进化算法(many-objective evolutionary algorithms, MaOEAs)研究已取得了长足发展。现对进化高维多目标优化(evolutionary many-objective optimization, EMaO)的研究进展进行全面的综述,具体包括:(1)描述了EMaO的相关理论背景;(2)分析了EMaO面临的挑战;(3)详细讨论了Ma OEAs的发展概况;(4)归纳了Ma OPs以及性能指标;(5)介绍了面对高维目标空间的可视化工具;(6)总结了Ma OEAs在一些领域的应用;(7)剖析了进化算法在解决MaOPs时所面临的问题和挑战,并给出未来研究方向的建议。  相似文献   

4.
进化高维多目标优化算法研究综述   总被引:3,自引:2,他引:1  
首先针对常规多目标优化算法求解高维多目标优化时面临的选择压力衰减问题进行论述;然后针对该问题,按照选择机制的不同详细介绍基于Pareto支配、基于分解策略和基于性能评价指标的典型高维多目标优化算法,并分析各自的优缺点;接着立足于一种全新的性能评价指标-----R2指标,给出R2指标的具体定义,介绍基于R2指标的高维多目标优化算法,分析此类算法的本质,并按照R2指标的4个关键组成部分进行综述;最后,发掘其存在的潜在问题以及未来发展空间.  相似文献   

5.
董明刚  曾慧斌  敬超 《控制与决策》2021,36(8):1804-1814
对现有的分解方法进行改进,提出一种基于弱关联的自适应高维多目标进化算法(WAEA).首先,提出一种基于夹角子空间的关联策略,使得一个解能与多个参考向量相关联;其次,提出弱关联概念,并基于此概念设计双模态标量函数,使算法能够更好地处理复杂PF问题,此外,算法通过检测参考向量子空间内解的数量,自适应调整惩罚参数大小,使其能...  相似文献   

6.
针对在高维空间下多目标进化算法难以维持种群收敛性和多样性平衡的问题, 本文提出一个基于IGD+指标的两阶段选择高维多目标进化算法(MaOEA–ITS). 在第1阶段, 算法基于IGD+指标选择收敛性良好的精英个体, 其所需的参考点通过引入切割平面截距法构建. 在第2阶段, MaOEA–ITS使用模糊c均值算法对参考向量进行聚类, 聚类后的参考向量引导种群分解策略对剩余个体进行环境选择, 从而维持种群的多样性. 另外, 为了保护能够提高种群多样性的极值解, 本文提出一个参考点分布自适应策略. 最后, 通过仿真实验来验证MaOEA–ITS的有效性和优越性.  相似文献   

7.
高维多目标优化问题是目标个数多于3的多目标优化问题.尽管进化优化方法在多目标优化问题求解中显示了卓越的性能,但是,对于高维多目标优化问题,已有方法存在目标维数难以扩展、Pareto占优关系无法区分进化个体,以及多样性维护策略失效等困难.因此,高维多目标优化问题的高效求解引起进化优化界的高度关注.本文将分别从新型占优关系、多样性维护策略、目标缩减、目标聚合、基于性能指标的选择、融入偏好、集合进化、变化算子、可视化技术,以及应用等10个方面分类总结近年来进化高维多目标优化的研究成果,通过分析已有研究存在的问题,指出今后可能的研究方向.  相似文献   

8.
陈国玉  李军华  黎明  陈昊 《自动化学报》2021,47(11):2675-2690
在高维多目标优化中, 不同的优化问题存在不同形状的Pareto前沿(PF), 而研究表明大多数多目标进化算法(Multi-objective evolutionary algorithms, MOEAs) 在处理不同的优化问题时普适性较差. 为了解决这个问题, 本文提出了一个基于R2指标和参考向量的高维多目标进化算法(An R2 indicator and reference vector based many-objective optimization evolutionary algorithm, R2-RVEA). R2-RVEA基于Pareto支配选取非支配解来指导种群进化, 仅当非支配解的数量超过种群规模时, 算法进一步采用种群分解策略和R2指标选择策略进行多样性管理. 通过大量的实验证明, 本文提出的算法在处理不同形状的PF时具有良好的性能.  相似文献   

9.
高维多目标优化问题普遍存在且难以解决, 到目前为止, 尚缺乏有效解决该问题的进化优化方法. 本文提出一种基于目标分解的高维多目标并行进化优化方法, 首先, 将高维多目标优化问题分解为若干子优化问题, 每一子优化问题除了包含原优化问题的少数目标函数之外, 还具有由其他目标函数聚合成的一个目标函数, 以降低问题求解的难度; 其次, 采用多种群并行进化算法, 求解分解后的每一子优化问题, 并在求解过程中, 充分利用其他子种群的信息, 以提高Pareto非被占优解的选择压力; 最后, 基于各子种群的非被占优解形成外部保存集, 从而得到高维多目标优化问题的Pareto 最优解集. 性能分析表明, 本文提出的方法具有较小的计算复杂度. 将所提方法应用于多个基准优化问题, 并与NSGA-II、PPD-MOEA、ε-MOEA、HypE和MSOPS等方法比较, 实验结果表明, 所提方法能够产生收敛性、分布性, 以及延展性优越的Pareto最优解集.  相似文献   

10.
区间参数高维多目标集合进化优化方法   总被引:1,自引:1,他引:0  
季新芳  张凤  王彩君  严海领  李娜 《控制与决策》2018,33(12):2213-2217
区间参数高维多目标优化问题是现实生活中常见的一类优化问题,但其有效的求解方法并不是很多.对此,利用集合的概念,提出一种求解此类问题的新方法.首先,利用衡量解集收敛性、分布性、多样性的3种性能指标将原优化问题降为3目标优化问题;其次,采用集合Pareto占优关系和不确定测度来区分转化后优化问题解的优劣;再次,设计自适应变化的交叉、变异概率以提高种群的全局和局部搜索能力;最后,利用4种基准函数优化问题,对所提出方法和对比方法进行测试.测试结果显示,除了收敛性,所提出方法得到的Pareto解集的不确定性、多样性、分布性均优于对比方法.  相似文献   

11.
在解决超多目标优化问题中,基于分解的进化算法是一种较为有效的方法.传统的分解方法依赖于一组均匀分布的参考向量,它借助聚合函数将多目标优化问题分解为一组单目标子问题,然后对这些子问题同时进行优化.然而,由于参考向量分布和Pareto前沿形状的不一致性,导致这些预定义的参考向量在解决复杂超多目标优化问题时表现较差.对此,提出一种基于自适应增强学习的超多目标进化算法(MaOEA-ABL).该算法主要分为两个阶段:第1阶段,采用一种自适应增强学习算法对预定义的参考向量进行调整,在学习过程中删除无用向量,增加新的向量;第2阶段,设计一种对Pareto形状无偏好的分解方法.为验证所提出算法的有效性,选取具有复杂Pareto前沿的MaF系列测试函数进行仿真研究,结果显示, MaOEA-ABL算法的IGD (inverted generational distance)均值在67%的测试函数上超过了对比算法,从而表明该算法在复杂超多目标优化问题中表现良好.  相似文献   

12.
为了解决现有多目标进化算法难以处理复杂帕累托前沿的问题,提出一种基于改进角度惩罚距离和自适应参考向量的高维多目标进化算法(improved angle penalized distance and adaptive reference vector based many-objective evolutionary algorithm,PDAREA).算法中采用改进的角度惩罚距离策略进行个体选择,有效减少种群中个体收敛性与分布性的冲突.自适应参考向量策略能够根据目标函数的变化动态调整参考向量的分布,可有效改善个体在帕累托前沿上分布不均的问题.通过参考向量再生策略,提高算法处理带有不规则帕累托前沿问题的能力和效率.最后,将所提出算法与7个主流算法进行仿真实验对比,并应用于两个实际问题中.结果表明,所提出算法在求解带有复杂帕累托前沿的高维多目标优化问题上具有较强的竞争力,能有效平衡种群收敛性与分布性.  相似文献   

13.
基于双极偏好占优的高维目标进化算法   总被引:1,自引:0,他引:1       下载免费PDF全文
高维目标优化是目前多目标优化领域的研究热点和难点.提出一种占优机制,即双极偏好占优用于处理高维目标优化问题.该占优机制同时考虑决策者的正偏好和负偏好信息,在非支配解之间建立了更加严格的占优关系,能够有效减少种群中非支配解的比例,引导算法向靠近正偏好同时远离负偏好的Pareto最优区域收敛.为检验该方法的有效性,将双极偏好占优融入NSGA-Ⅱ中,形成算法2p-NSGA-Ⅱ,并在2到15目标标准测试函数上进行测试,得到了良好的实验结果.同时,将所提出的占优机制与目前该领域的两种占优机制g占优和r占优进行性能对比,实验结果表明,2p-NSGA-Ⅱ算法无论是在求解精度还是运行效率上,整体上均优于g-NSGA-Ⅱ和r-NSGA-Ⅱ.  相似文献   

14.
肖人彬  李贵  陈峙臻 《控制与决策》2023,38(7):1761-1788
近年来,超多目标优化逐渐成为多目标优化研究的热点之一,由于超多目标优化问题具有难以寻优的高维目标空间,其研究颇有挑战性,因此受到广泛关注.现有综述性文献通常只是针对某个特定方面,缺乏系统性考察.鉴于此,首先从问题定义出发,综合考虑超多目标优化问题范畴,进行超多目标优化问题的概念辨析;其次通过对近些年的相关文献整理,系统分析超多目标优化问题进展并对其中部分经典方法加以介绍,通过对基准测试函数和性能指标的说明,围绕超多目标优化研究方法展开综合性论述;接着选取5个典型的超多目标进化算法,在2组基准测试函数和4个实际问题上分别展开仿真实验,通过性能指标和非参数检验对不同类别的算法进行理论分析;最后在明确超多目标优化研究领域的若干前沿问题的基础上,对今后的研究工作进行展望.  相似文献   

15.
刘元  郑金华  邹娟  喻果 《自动化学报》2018,44(7):1304-1320
传统多目标优化算法(Multi-objective evolution algorithms,MOEAs)的基本框架大致分为两部分:首先是收敛性保持,采用Pareto支配方法将种群分成若干非支配层;其次是分布性保持,在临界层中,采用分布性保持机制维持种群的分布性.然而在处理高维优化问题(Many-objective optimization problems,MOPs)(目标维数大于3)时,随着目标维数的增加,种群的收敛性和分布性的冲突加剧,Pareto支配关系比较个体优劣的能力也迅速下降,此时传统的MOEA已不再适用于高维优化问题.鉴于此,本文提出了一种基于邻域竞赛的多目标优化算法(Evolutionary algorithm based on neighborhood competition for multi-objective optimization,NCEA).NCEA首先将个体的各个目标之和作为个体的收敛性估计;然后,计算当前个体向量与收敛性最好的个体向量之间的夹角,并将其作为当前个体的邻域估计;最后,通过邻域竞赛方法将问题划分为若干个相互关联的子问题并逐步优化.为了验证NCEA的有效性,本文选取5个优秀的算法与NCEA进行对比实验.通过对比实验验证,NCEA具有较强的竞争力,能同时保持良好的收敛性和分布性.  相似文献   

16.
基于R2指标和分解策略的多目标粒子群优化算法(R2-MOPSO)在求解2、3个目标优化问题时具有较好的收敛性和多样性,但在求解高维多目标优化问题时难度较大.对此,提出一种基于R2指标和目标空间分解的高维多目标粒子群优化算法(R2-MOPSO-II).首先借鉴R2指标和目标空间分解策略综合权衡选择过程的收敛性和多样性,设...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号