共查询到10条相似文献,搜索用时 0 毫秒
1.
深度神经网络是具有复杂结构和多个非线性处理单元的模型, 通过模块化的方式分层从数据提取代表性特征, 已经在晶圆缺陷识别领域得到了较为广泛的应用. 但是, 深度神经网络在应用过程中本身存在“黑箱”和过度依赖数据的问题, 显著地影响深度神经网络在晶圆缺陷识别的工业可应用性. 提出一种基于堆叠降噪自编码器的神经–符号模型. 首先, 根据堆叠降噪自编码器的网络特点采用了一套符号规则系统, 规则形式和组成结构使其可与深度神经网络有效融合. 其次, 根据 网络和符号规则之间的关联性提出完整的知识抽取与插入算法, 实现了深度网络和规则之间的知识转换. 在实际工业晶圆表面图像数据集WM-811K上的试验结果表明, 基于堆叠降噪自编码器的神经–符号模型不仅取得了较好的缺陷探测与识别性能, 而且可有效提取规则并通过规则有效描述深度神经网络内部计算逻辑, 综合性能优于目前经典的深度神经网络. 相似文献
2.
基于深度学习的特征抽取是目前数据降维问题的研究热点,堆叠自编码器作为一种较为常用的模型,无法对混有噪声及较稀疏的数据进行良好的特征表达。面向微博情感分析,通过在堆叠降噪自编码器的各隐藏层中加入稀疏因子,来解决样本数据所含噪声和稀疏性对特征抽取的影响。使用COAE评测数据集进行的情感分析实验表明所提模型分类的准确率和召回率都有所提高。 相似文献
3.
目前医用胶囊生产过程中的缺陷检测主要由人工完成,费时费力,容易受主观因素的影响。提出一种基于堆叠降噪自动编码器的胶囊表面缺陷检测方法,该方法首先建立深度自动编码器网络,并根据缺陷样本进行降噪训练,获取网络的初始权值;然后通过BP算法进行微调,得到训练样本到无缺陷模板之间的映射关系;最后利用重构图像与缺陷图像之间的对比关系,实现测试样本的缺陷检测。实验表明,堆叠降噪自动编码器较好地建立了上述映射关系,能快速、准确地进行缺陷检测,对噪声具有很强的鲁棒性和稳定性。 相似文献
4.
特征提取是软件缺陷预测中的关键步骤,特征提取的质量决定了缺陷预测模型的性能,但传统的特征提取方法难以提取出软件缺陷数据的深层本质特征。深度学习理论中的自动编码器能够从原始数据中自动学习特征,并获得其特征表示,同时为了增强自动编码器的鲁棒性,本文提出一种基于堆叠降噪稀疏自动编码器的特征提取方法,通过设置不同的隐藏层数、稀疏性约束和加噪方式,可以直接高效地从软件缺陷数据中提取出分类预测所需的各层次特征表示。利用Eclipse缺陷数据集的实验结果表明,该方法较传统特征提取方法具有更好的性能。 相似文献
5.
6.
传统的深度置信网络(DBN)采用随机初始化受限玻尔兹曼机(RBM)的权值和偏置的方法初始化网络。虽然这在一定程度上克服了由BP算法带来的易陷入局部最优和训练时间长的问题,但随机初始化仍然会导致网络重构和原始输入的较大差别,这使得网络无论在准确率还是学习效率上都无法得到进一步提升。针对以上问题,提出一种基于稀疏降噪自编码器(SDAE)的深度网络模型,其核心是稀疏降噪自编码器对数据的特征提取。首先,训练稀疏降噪自编码;然后,用训练后得到的权值和偏置来初始化深度置信网络;最后,训练深度置信网络。在Poker Hand 纸牌游戏数据集和MNIST、USPS手写数据集上测试模型性能,在Poker Hand数据集下,方法的误差率比传统的深度置信网络降低46.4%,准确率和召回率依次提升15.56%和14.12%。实验结果表明,所提方法能有效地改善模型性能。 相似文献
7.
现有的社会化推荐算法未考虑信任用户对目标用户深层的偏好影响。针对这一问题,提出了一种基于深度学习的混合推荐算法,利用降噪自编码器学习用户及其信任用户的评分偏好,使用加权隐藏层来平衡这些表示的重要性,有效建模用户间的潜在偏好交互。在此基础上,通过用户聚类和个性化权重区分不同类的用户受其信任用户的影响程度。在开放数据集上的实验结果表明,该算法优于现有的社会化推荐算法,与主要的推荐算法SoRec、RSTE、SocialMF、TrustMF相比,其平均绝对误差(MAE)和均方根误差(RMSE)显著降低,获得了较好的推荐效果。 相似文献
8.
9.
刘鹏 《计算机与数字工程》2021,49(5):875-879
依据带噪语音中不同类型语音分段(segment)对语音整体的可懂度影响不同,提出了一种基于语音分段来分类训练深度降噪自编码器(DDAE)的语音增强算法.该算法使得DDAE模型在尽可能减小Dropout所引入的扰动对带噪语音噪声特性破坏的同时,提高了对带噪语音可懂度关键分段(中均方根分段)语音特性学习的鲁棒性,提高了增强... 相似文献
10.
协同过滤算法已广泛应用在推荐系统中,在实现新异性推荐功能中效果显著,但仍存在数据稀疏、扩展性差、冷启动等问题,需要新的设计思路和技术方法进行优化.近几年,深度学习在图像处理、目标识别、自然语言处理等领域均取得突出成果,将深度神经网络模型与推荐算法结合,为构建新型推荐系统带来新的契机.本文提出一种新式混合神经网络模型,该模型由栈式降噪自编码器和深度神经网络构成,学习得到用户和项目的潜在特征向量以及用户-项目之间的交互行为模型,有效解决数据稀疏问题从而提高系统推荐质量.该推荐算法模型通过MovieLens电影评分数据集测试,实验结果与SVD、PMF等传统推荐算法和经典自编码器模型算法作对比,其推荐质量得到显著提升. 相似文献