共查询到19条相似文献,搜索用时 62 毫秒
1.
2.
粒子滤波算法中重采样是解决粒子退化的一种重要方法,但重采样会导致粒子多样性的损失。针对这一问题,对基本重采样算法进行了改进。改进算法首先按基本重采样思想找到权值大的粒子进行复制,然后借鉴遗传算法进行交叉和变异操作,其中变异由变异尺度因子和粒子集的均值来实现。利用改进重采样的粒子滤波算法对经典纯方位目标跟踪问题进行了仿真,仿真结果表明,改进算法具有更好的跟踪精度。 相似文献
3.
4.
定义了欧氏空间内的局部粒子密度的概念,针对四种不同的情况作出分析,对优选粒子的优劣作出评价并指导后续的粒子重采样和模板更新过程,并在此基础上给出了一种新的基于局部粒子密度的目标跟踪方法.比较实验显示,相对于原始粒子滤波方法和其他粒子重要性重采样方法,该方法在保证跟踪有效性的同时,提高了跟踪效率. 相似文献
5.
6.
针对在低信噪比目标检测问题中,基于PHD的粒子滤波检测前跟踪算法(PHD-TBD)存在目标位置估计误差较大的缺陷,提出一种结合粒子群优化算法的基于PHD的粒子滤波检测前跟踪方法(PSO-PHD-TBD)。该算法在滤波预测和更新步骤之间加入基于NSGA-Ⅱ的多目标粒子群优化算法,结合量测信息将预测完成的粒子集的分布进行优化,将所有粒子转移到后验概率密度较大的区域,进而改善了多目标位置估计的性能;然后使用基于密度聚类的DBSCAN算法对粒子聚类,提取目标状态。仿真实验表明,在不同信噪比条件下,PSO-PHD-TBD在多目标数目估计情况与PHD-TBD算法一致,而位置估计精度明显优于PHD-TBD算法。 相似文献
7.
针对基于粒子滤波的弱小目标检测前跟踪算法(Particle Filter Track Before Detect, PF-TBD)存在采样粒子数目随空间维数呈指数增长、计算量急剧增加等问题,提出一种基于串行重采样改进的检测前跟踪算法(Serial Resampling Track Before Detect, SR-TBD)。所提算法通过对粒子状态的位置空间与速度空间进行串行采样,实现搜索帧间能量的有效积累,并降低状态维数造成计算量的增加,提升算法收敛速度。通过算法仿真与传统 PF-TBD 算法对比,表明本文提出的改进算法在算法收敛速度、运算量等方面均得到提升。 相似文献
8.
9.
10.
11.
在杂波背景条件下,现有的基于概率假设密度(PHD)滤波的粒子滤波检测前跟踪(TBD)算法,存在对密集多目标数目估计不准,使用粒子数目较多会造成维数灾难的问题。因此,该文引入两层粒子的概念,将基于平行分割(PP)理论的辅助粒子滤波(APF)应用于基于概率假设密度的检测前跟踪 (PHD-TBD)算法中,提出基于概率假设密度滤波的平行分割辅助粒子滤波检测前跟踪(APP-PF-PHD-TBD)算法以提高目标数目及状态估计精度。仿真实验证明,相对于现有基于PHD的粒子滤波检测前跟踪算法,该算法在目标数目和状态估计精度上具有显著的性能优势,在密集目标场景下,优势尤为突出。最后,利用导航雷达实测所得海杂波背景数据证明,该算法在应用中性能更加优异。 相似文献
12.
检测前跟踪通过在连续多帧观测中对目标信号进行非相参积累以检测和跟踪微弱目标。积累的关键在于对目标轨迹的准确估计和多帧迭代滤波。传统粒子滤波器过于依赖建议分布,对目标轨迹的估计不够准确。新提出的粒子流滤波器是一种很好的替代方法,但其过于依赖当前时刻的量测而弱化多帧迭代滤波。本文提出一种在粒子滤波框架下采用粒子流的检测前跟踪方法:采用粒子滤波器进行多帧迭代滤波,但在每一帧内,采用Localized Exact Daum-Huang粒子流进行滤波。为了应对目标量测的不确定性,本文改造了Localized Exact Daum-Huang滤波器,为每个粒子在其邻域内寻找最大似然量测,并利用该量测更新粒子状态。Rayleigh分布杂波下Swerling1型起伏目标的检测和跟踪实验证明了所提算法的性能。 相似文献
13.
在机动微弱目标的检测和跟踪方面,当前主要研究方法之一是多模型粒子滤波检测前跟踪(MMPF-TBD),该方法以尽可能多的运动模型去匹配目标的机动,符合运动模型精细化研究方向,但存在模型数目与类别较多,模型之间转移计算复杂和有效模型使用效率低等问题。本文从多个运动模型结构上的相似性出发,提出一种优化的多模型粒子滤波检测前跟踪方法,通过粒子机动加速度的变化,在一个模型框架下模拟出类似MMPF TBD中的多种机动模型,简化了算法结构;在该方法实现过程中,采用辅助粒子滤波提高状态估计精度。仿真实验表明该方法相比MMPF-TBD具有更稳定的检测和跟踪性能以及在低信噪比环境中更好的适用性。 相似文献
14.
15.
作为概率假设密度滤波的典型实现方式,粒子概率假设密度滤波器无需线性高斯等先验假设,因而在多目标跟踪中得到了广泛的应用。为解决粒子退化问题并保持粒子规模,该滤波器引入了重采样机制,然而,该重采样机制易引起粒子多样性耗尽,导致粒子贫化问题产生。为解决这一问题,该文提出一种新的基于随机摄动再采样的粒子概率假设密度滤波器。首先,全面分析了粒子概率假设密度滤波因粒子贫化问题导致目标失跟的过程。然后设计了一种随机摄动再采样算法,该算法在重采样导致粒子多样性缺失时,根据源粒子的位置与复制次数随机产生相应数目的新粒子,并对源粒子进行删减,其可在保留源粒子信息的前提下保持粒子的多样性。最后,该文将该算法纳入概率假设密度滤波框架,提出了一种新的粒子概率假设密度滤波器。仿真结果表明该滤波器在不显著增加运行时间的前提下能够克服粒子贫化问题,相比标准的粒子概率假设密度滤波器具有更好的跟踪性能。 相似文献
16.
标准的多模型粒子滤波检测前跟踪技术是在低信噪比环境下检测与跟踪机动性的微弱目标的有效手段。但是由于其采用固定的运动模型数量,当运动模型数量过大时,模型之间的竞争会导致性能的下降。针对此问题,利用道路信息提出了一种变结构的多模型粒子滤波检测前跟踪算法。在每一时刻,根据目标的估计状态和挖掘的道路信息自适应地更新和改变运动模型集以能够选择更加有效的模型集,同时减少了模型数量,并且利用道路信息对目标的运动状态进行约束和限制。最后通过Monte Carlo仿真实验表明,基于文中所提出的算法在检测跟踪性能方面明显优于标准的多模型粒子滤波检测前跟踪算法。 相似文献
17.
18.