首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 268 毫秒
1.
大数据时代,数据安全性和隐私性受到越来越多的关注和重视。联邦学习被视为是一种隐私保护的可行技术,允许从去中心化的数据中训练深度模型。针对电力投资系统中各部门因担心数据隐私信息泄露而带来的数据孤岛和隐私保护问题,提出了一种隐私保护的联邦学习框架,允许各部门自有数据在不出本地的情况下,联合训练模型。首先,提出了联邦学习的架构,支持分布式地训练模型;其次,引入同态加密技术,提出了隐私保护的联邦平均学习流程,在数据隐私保护的情况下,实现联合训练模型;最后,实验结果表明,该框架具有较好的收敛性,而且联合训练得到的模型具有较好的精度。  相似文献   

2.
近年来,联邦学习成为解决机器学习中数据孤岛与隐私泄露问题的新思路。联邦学习架构不需要多方共享数据资源,只要参与方在本地数据上训练局部模型,并周期性地将参数上传至服务器来更新全局模型,就可以获得在大规模全局数据上建立的机器学习模型。联邦学习架构具有数据隐私保护的特质,是未来大规模数据机器学习的新方案。然而,该架构的参数交互方式可能导致数据隐私泄露。目前,研究如何加强联邦学习架构中的隐私保护机制已经成为新的热点。从联邦学习中存在的隐私泄露问题出发,探讨了联邦学习中的攻击模型与敏感信息泄露途径,并重点综述了联邦学习中的几类隐私保护技术:以差分隐私为基础的隐私保护技术、以同态加密为基础的隐私保护技术、以安全多方计算(SMC)为基础的隐私保护技术。最后,探讨了联邦学习中隐私保护中的若干关键问题,并展望了未来研究方向。  相似文献   

3.
刘艺璇  陈红  刘宇涵  李翠平 《软件学报》2022,33(3):1057-1092
联邦学习是顺应大数据时代和人工智能技术发展而兴起的一种协调多个参与方共同训练模型的机制.它允许各个参与方将数据保留在本地,在打破数据孤岛的同时保证参与方对数据的控制权.然而联邦学习引入了大量参数交换过程,不仅和集中式训练一样受到模型使用者的威胁,还可能受到来自不可信的参与设备的攻击,因此亟需更强的隐私手段保护各方持有的...  相似文献   

4.
近些年, 联邦学习(Federated learning, FL)由于能够打破数据壁垒, 实现孤岛数据价值变现, 受到了工业界和学术界的广泛关注. 然而, 在实际工程应用中, 联邦学习存在着数据隐私泄露和模型性能损失的问题. 为此, 首先对这两个问题进行数学描述与分析. 然后, 提出一种自适应模型聚合方案, 该方案能够设定各参与者的Mini-batch值和自适应调整全局模型聚合间隔, 旨在保证模型精度的同时, 提高联邦学习训练效率. 并且, 混沌系统被首次引入联邦学习领域中, 用于构建一种基于混沌系统和同态加密的混合隐私保护方案, 从而进一步提升系统的隐私保护水平. 理论分析与实验结果表明, 提出的联邦学习算法能够保证参与者的数据隐私安全. 并且, 在非独立同分布数据的场景下, 该算法能够在保证模型精度的前提下提高训练效率, 降低系统通信成本, 具备实际工业场景应用的可行性.  相似文献   

5.
随着物联网和大数据技术的高速发展,以传统云计算模式为代表的集中式学习效率低下,且易受到单点攻击、共谋攻击、中间人攻击等一系列攻击手段,造成数据安全的隐患。边缘计算模式使得分布式联邦学习成为了可能,然而,联邦学习虽然能够保证数据在本地的安全和隐私,但是也面临众多安全威胁,如梯度泄露攻击,此外,效率问题也是联邦学习的痛点所在。为了保障边缘计算场景下的模型训练安全,提出了一种边缘计算下的轻量级联邦学习隐私保护方案(Lightweight Federated Learning Privacy Protection Scheme Under Edge Computing, LFLPP)。首先,提出一种云-边-端分层的联邦学习框架;其次,对不同层进行隐私保护;最后,提出一种周期性更新策略,极大地提高了收敛速度。使用乳腺癌肿瘤数据集和CIFAR10数据集在LR模型和Resnet18残差模型上进行训练和测试,同时使用CIFAR10数据集与FedAvg和PPFLEC(Privacy-Preserving Federated Learning for Internet of Medical Things ...  相似文献   

6.
联邦学习是解决多组织协同训练问题的一种有效手段,但是现有的联邦学习存在不支持用户掉线、模型API泄露敏感信息等问题。文章提出一种面向用户的支持用户掉线的联邦学习数据隐私保护方法,可以在用户掉线和保护的模型参数下训练出一个差分隐私扰动模型。该方法利用联邦学习框架设计了基于深度学习的数据隐私保护模型,主要包含两个执行协议:服务器和用户执行协议。用户在本地训练一个深度模型,在本地模型参数上添加差分隐私扰动,在聚合的参数上添加掉线用户的噪声和,使得联邦学习过程满足(ε,δ)-差分隐私。实验表明,当用户数为50、ε=1时,可以在模型隐私性与可用性之间达到平衡。  相似文献   

7.
联邦学习为解决“数据孤岛”下的多方联合建模问题提出了新的思路。联邦支持向量机能够在数据不出本地的前提下实现跨设备的支持向量机建模,然而现有研究存在训练过程中隐私保护不足、缺乏针对非线性联邦支持向量机的研究等缺陷。针对以上问题,利用随机傅里叶特征方法和CKKS同态加密机制,提出了一种隐私保护的非线性联邦支持向量机训练(PPNLFedSVM)算法。首先,基于随机傅里叶特征方法在各参与方本地生成相同的高斯核近似映射函数,将各参与方的训练数据由低维空间显式映射至高维空间中;其次,基于CKKS密码体制的模型参数安全聚合算法,保障模型聚合过程中各参与方模型参数及其贡献的隐私性,并结合CKKS密码体制的特性对参数聚合过程进行针对性优化调整,以提高安全聚合算法的效率。针对安全性的理论分析和实验结果表明,PPNLFedSVM算法可以在不损失模型精度的前提下,保证参与方模型参数及其贡献在训练过程中的隐私性。  相似文献   

8.
郭倩  赵津  过弋 《信息网络安全》2024,24(8):1196-1209
联邦学习作为一种新兴的隐私保护分布式机器学习框架,利用密码原语有效地解决了隐私泄露问题,如何在分布式环境中防止投毒攻击已成为联邦学习的研究热点。目前的研究工作大部分依赖于数据独立同分布情况,并使用明文进行恶意梯度识别,无法处理数据异构带来的挑战。为了解决上述问题,文章提出一个基于分层聚类的个性化联邦学习隐私保护框架。该框架基于坐标感知的中位数算法对梯度进行加密,并采用安全余弦相似度方案识别恶意梯度,通过层次聚合方法增强模型在独立同分布和非独立同分布场景下的鲁棒性。在MNIST、CIFAR-10和Fashion-MNIST三个公开数据集上的实验结果表明,该模型具有较强的隐私保护能力。与FedAVG、PPeFL、中位数、裁剪均值和聚类等算法相比,该模型准确率分别提升了14.90%、9.59%、29.50%、26.57%和23.19%。  相似文献   

9.
联邦学习能使用户不共享原始数据的情况下, 允许多个用户协同训练模型. 为了确保用户本地数据集不被泄露, 现有的工作提出安全聚合协议. 但现有的多数方案存在未考虑全局模型隐私、系统计算资源与通信资源耗费较大等问题. 针对上述问题, 提出了联邦学习下高效的强安全的隐私保护安全聚合方案. 该方案利用对称同态加密技术实现了用户模型与全局模型的隐私保护, 利用秘密共享技术解决了用户掉线问题. 同时, 该方案利用Pedersen承诺来验证云服务器返回聚合结果的正确性, 利用BLS签名保护了用户与云服务器交互过程中的数据完整性. 此外, 安全性分析表明该方案是可证明安全的; 性能分析表明该方案是高效且实用的, 适用于大规模用户的联邦学习系统.  相似文献   

10.
传统的联邦学习依赖一个中央服务器,模型训练过程易受单点故障和节点恶意攻击的影响,明文传递的中间参数也可能被用来推断出数据中的隐私信息.提出了一种基于区块链的去中心化、安全、公平的联邦学习模型,利用同态加密技术保护协同训练方的中间参数隐私,通过选举的联邦学习委员会进行模型聚合和协同解密.解密过程通过秘密共享方案实现安全的密钥管理,利用双线性映射累加器为秘密份额提供正确性验证.引入信誉值作为评估参与方可靠性的指标,利用主观逻辑模型实现不信任增强的信誉计算作为联邦学习委员会的选举依据,信誉值作为激励机制的参考还可以保障参与公平性.模型信息和信誉值通过区块链实现数据的防篡改和不可抵赖.实验表明,模型在训练准确率相比中心化学习模型略有损失的情况下,能够保障在多方协作的环境下以去中心化的方式训练模型,有效实现了各参与方的隐私保护.  相似文献   

11.
    
To achieve data privacy in Internet of Things (IoT), fully homomorphic encryption (FHE) technique is used to encrypt the data while allowing others to compute on the encrypted data. However, there are many well-known problems with FHE such as chosen-ciphertext attack security and circuit privacy problem. In this article, we demonstrate that a famous FHE application named Brakerski/Fan–Vercauteren scheme, a circuit privacy application based on fast private set intersection, and an encoding application that encodes integer or floating point numbers based on Microsoft Simple Encryption Arithmetic Library homomorphic encryption library, are insecure against chosen ciphertext attacks due to insecurity of the underlying fully homomorphic schemes. These results show that using cryptographic primitives even with security proofs causes serious security vulnerabilities on the applications themselves. The results also give evidences that the security of adopted cryptographic primitives in IoT should be proved in appropriate formal security models as well as proof of the scheme itself.  相似文献   

12.
当前的隐私保护机器学习方法在保障数据隐私方面取得了一定进展,然而在计算效率和服务器资源利用等方面仍存在挑战。为了充分利用服务器资源,针对前馈神经网络,文章提出一种基于主从服务器架构的同态加密前馈神经网络隐私保护方案。该方案通过秘密共享技术将数据和模型参数分发至两个不共谋的服务器,并利用同态加密技术对服务器间的交互信息进行加密。在计算效率方面,通过避免耗时的密文向量和明文矩阵乘法,缩短了方案的运行时间。在安全性方面,通过引入随机噪声对秘密份额加噪,防止了服务器获得原始数据信息。实验结果表明,文章所提方案在计算复杂度和通信开销上均有显著改善。  相似文献   

13.
    
In federated learning (FL), a parameter server needs to aggregate user gradients and a user needs to protect the value of their gradients. Among all the possible solutions to the problem, those based on additive homomorphic encryption (AHE) are natural. As users may drop out in FL and an adversary could corrupt some users and the parameter server, we require a dropout-resilient AHE scheme with a distributed key generation algorithm. In this paper, we aim to provide a lattice based distributed threshold AHE (DTAHE) scheme and to show their applications in FL. The main merit of the DTAHE scheme is to save communication bandwidth compared with other latticed based DTAHE schemes. Embedding the scheme into FL, we get two secure aggregation protocols. One is secure against a semi-honest adversary and the other is secure against an active adversary. The latter exploits a smart contract in a ledger. Finally, we provide security proofs and performance analysis for the scheme and protocols.  相似文献   

14.
    
Federated learning (FL) was created with the intention of enabling collaborative training of models without the need for direct data exchange. However, data leakage remains an issue in FL. Multi-Key Fully Homomorphic Encryption (MKFHE) is a promising technique that allows computations on ciphertexts encrypted by different parties. MKFHE’s aptitude to handle multi-party data makes it an ideal tool for implementing privacy-preserving federated learning.We present a multi-hop MKFHE with compact ciphertext. MKFHE allows computations on data encrypted by different parties. In MKFHE, the compact ciphertext means that the size of the ciphertext is independent of the number of parties. The multi-hop property means that parties can dynamically join the homomorphic computation at any time. Prior MKFHE schemes were limited by their inability to combine these desirable properties. To address this limitation, we propose a multi-hop MKFHE scheme with compact ciphertext based on the random sample common reference string(CRS). We construct our scheme based on the residue number system (RNS) variant CKKS17 scheme, which enables efficient homomorphic computation over complex numbers due to the RNS representations of numbers.We construct a round efficient privacy-preserving federated learning based on our multi-hop MKFHE. In FL, there is always the possibility that some clients may drop out during the computation. Previous HE-based FL methods did not address this issue. However, our approach takes advantage of multi-hop MKFHE that users can join dynamically and constructs an efficient federated learning scheme that reduces interactions between parties. Compared to other HE-based methods, our approach reduces the number of interactions during a round from 3 to 2. Furthermore, in situations where some users fail, we are able to reduce the number of interactions from 3 to just 1.  相似文献   

15.
全同态加密方案是一种具备数据机密性和安全性的加密方案,同时还能够对密文进行计算操作。在云计算时代,全同态加密方案能够满足私有信息检索、多方安全计算等多种应用需求。错误学习与全同态加密的结合,迅速推动了全同态加密方案的发展,并引出了多种技术工具,如密钥交换和模交换等具有理论和实际应用意义的技术。自从2011年基于LWE的全同态加密方案被提出以来,基于LWE类型的方案已成为全同态加密方案的主流方法,并逐步从理论走向实际应用。文章首先介绍全同态加密的基础知识和应用,并对构造方案的数学理论进行详细分析;然后系统梳理了每一代同态加密方案,并给出了每一代方案的典型构造方式;最后探讨了当前基于LWE的全同态加密方案存在的问题以及未来的发展趋势,为后续研究者提供一些参考。  相似文献   

16.
随着智能网联汽车的普及,用户数据的隐私问题成为了车联网发展中亟待解决的问题。针对车联网聚合方案的研究现状,对当前方案中存在的问题进行分析总结。首先,系统地介绍了车联网中主流系统模型和车联网中常见的攻击模型;其次,对当前国内外应用在车联网中的聚合方案的安全性、效率和优劣进行分析总结,分别从签名阶段聚合方案、用户数据收集和传输阶段聚合方案和云平台处理数据阶段聚合方案三方面对其进行讨论;最后,阐述了车联网聚合方案中存在的问题及解决方法,展望了车联网聚合方案未来的研究方向。  相似文献   

17.
针对基于位置服务(LBS)中外包计算最短路径可能泄露用户隐私的问题,基于同态加密和安全多方计算,提出了一个基于同态加密的云环境障碍最短路径导航的隐私保护算法,为用户和数据所有者提供隐私保护.在该算法中,使用安全多方计算解决两种不同条件下计算道路中有无障碍物的最短路径隐私问题,并基于同态加密提出了有障碍物查询和无障碍物查询两个协议.最后,依照上述协议在理论和实践两个方面证明了所提出框架的有效性.  相似文献   

18.
随着深度学习的快速发展,其在语音处理、图像识别和自然语言理解等领域被广泛应用,为科研产业以及日常生活带去了巨大的变革.Intel紧跟深度学习的浪潮,推出了第2代Xeon Phi处理器KNL(knights landing),其后又发布了第3代Xeon Phi处理器KNM(knights mill),为深度学习的蓬勃发展带去了新的活力.通过在Intel平台上进行快速卷积算法Winograd的研究与优化,对比Intel MKL(math kernel library) DNN(deep neural network)中的卷积性能,推动Intel MKL DNN中深度神经网络接口的完善以及Intel平台上深度学习的发展.研究中结合Intel最新深度学习平台的AVX-512指令集、高速内存MCDRAM、多Memory/SNC模式、二维网格状内核结构等特性,并通过对内存分配、数据调度等情况的分析,设计优化Winograd算法,一方面选取典型的卷积神经网络(convolutional neural network, CNN)网络模型VGG19,测试对比Intel MKL DNN的卷积实现,最终取得了2倍多的性能加速比;另一方面,通过测试常用卷积类型,对比Intel MKL DNN和NVIDIA cuDNN,验证了实现的Winograd对于常用卷积类型具有很好的适用性且具有实际使用价值.该研究工作期望为Intel平台在深度学习领域的发展提供重要的指导意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号