共查询到18条相似文献,搜索用时 125 毫秒
1.
大数据时代,数据安全性和隐私性受到越来越多的关注和重视。联邦学习被视为是一种隐私保护的可行技术,允许从去中心化的数据中训练深度模型。针对电力投资系统中各部门因担心数据隐私信息泄露而带来的数据孤岛和隐私保护问题,提出了一种隐私保护的联邦学习框架,允许各部门自有数据在不出本地的情况下,联合训练模型。首先,提出了联邦学习的架构,支持分布式地训练模型;其次,引入同态加密技术,提出了隐私保护的联邦平均学习流程,在数据隐私保护的情况下,实现联合训练模型;最后,实验结果表明,该框架具有较好的收敛性,而且联合训练得到的模型具有较好的精度。 相似文献
2.
3.
近年来,联邦学习成为解决机器学习中数据孤岛与隐私泄露问题的新思路。联邦学习架构不需要多方共享数据资源,只要参与方在本地数据上训练局部模型,并周期性地将参数上传至服务器来更新全局模型,就可以获得在大规模全局数据上建立的机器学习模型。联邦学习架构具有数据隐私保护的特质,是未来大规模数据机器学习的新方案。然而,该架构的参数交互方式可能导致数据隐私泄露。目前,研究如何加强联邦学习架构中的隐私保护机制已经成为新的热点。从联邦学习中存在的隐私泄露问题出发,探讨了联邦学习中的攻击模型与敏感信息泄露途径,并重点综述了联邦学习中的几类隐私保护技术:以差分隐私为基础的隐私保护技术、以同态加密为基础的隐私保护技术、以安全多方计算(SMC)为基础的隐私保护技术。最后,探讨了联邦学习中隐私保护中的若干关键问题,并展望了未来研究方向。 相似文献
4.
近些年, 联邦学习(Federated learning, FL)由于能够打破数据壁垒, 实现孤岛数据价值变现, 受到了工业界和学术界的广泛关注. 然而, 在实际工程应用中, 联邦学习存在着数据隐私泄露和模型性能损失的问题. 为此, 首先对这两个问题进行数学描述与分析. 然后, 提出一种自适应模型聚合方案, 该方案能够设定各参与者的Mini-batch值和自适应调整全局模型聚合间隔, 旨在保证模型精度的同时, 提高联邦学习训练效率. 并且, 混沌系统被首次引入联邦学习领域中, 用于构建一种基于混沌系统和同态加密的混合隐私保护方案, 从而进一步提升系统的隐私保护水平. 理论分析与实验结果表明, 提出的联邦学习算法能够保证参与者的数据隐私安全. 并且, 在非独立同分布数据的场景下, 该算法能够在保证模型精度的前提下提高训练效率, 降低系统通信成本, 具备实际工业场景应用的可行性. 相似文献
5.
随着物联网和大数据技术的高速发展,以传统云计算模式为代表的集中式学习效率低下,且易受到单点攻击、共谋攻击、中间人攻击等一系列攻击手段,造成数据安全的隐患。边缘计算模式使得分布式联邦学习成为了可能,然而,联邦学习虽然能够保证数据在本地的安全和隐私,但是也面临众多安全威胁,如梯度泄露攻击,此外,效率问题也是联邦学习的痛点所在。为了保障边缘计算场景下的模型训练安全,提出了一种边缘计算下的轻量级联邦学习隐私保护方案(Lightweight Federated Learning Privacy Protection Scheme Under Edge Computing, LFLPP)。首先,提出一种云-边-端分层的联邦学习框架;其次,对不同层进行隐私保护;最后,提出一种周期性更新策略,极大地提高了收敛速度。使用乳腺癌肿瘤数据集和CIFAR10数据集在LR模型和Resnet18残差模型上进行训练和测试,同时使用CIFAR10数据集与FedAvg和PPFLEC(Privacy-Preserving Federated Learning for Internet of Medical Things ... 相似文献
6.
联邦学习是解决多组织协同训练问题的一种有效手段,但是现有的联邦学习存在不支持用户掉线、模型API泄露敏感信息等问题。文章提出一种面向用户的支持用户掉线的联邦学习数据隐私保护方法,可以在用户掉线和保护的模型参数下训练出一个差分隐私扰动模型。该方法利用联邦学习框架设计了基于深度学习的数据隐私保护模型,主要包含两个执行协议:服务器和用户执行协议。用户在本地训练一个深度模型,在本地模型参数上添加差分隐私扰动,在聚合的参数上添加掉线用户的噪声和,使得联邦学习过程满足(ε,δ)-差分隐私。实验表明,当用户数为50、ε=1时,可以在模型隐私性与可用性之间达到平衡。 相似文献
7.
联邦学习为解决“数据孤岛”下的多方联合建模问题提出了新的思路。联邦支持向量机能够在数据不出本地的前提下实现跨设备的支持向量机建模,然而现有研究存在训练过程中隐私保护不足、缺乏针对非线性联邦支持向量机的研究等缺陷。针对以上问题,利用随机傅里叶特征方法和CKKS同态加密机制,提出了一种隐私保护的非线性联邦支持向量机训练(PPNLFedSVM)算法。首先,基于随机傅里叶特征方法在各参与方本地生成相同的高斯核近似映射函数,将各参与方的训练数据由低维空间显式映射至高维空间中;其次,基于CKKS密码体制的模型参数安全聚合算法,保障模型聚合过程中各参与方模型参数及其贡献的隐私性,并结合CKKS密码体制的特性对参数聚合过程进行针对性优化调整,以提高安全聚合算法的效率。针对安全性的理论分析和实验结果表明,PPNLFedSVM算法可以在不损失模型精度的前提下,保证参与方模型参数及其贡献在训练过程中的隐私性。 相似文献
8.
联邦学习能使用户不共享原始数据的情况下, 允许多个用户协同训练模型. 为了确保用户本地数据集不被泄露, 现有的工作提出安全聚合协议. 但现有的多数方案存在未考虑全局模型隐私、系统计算资源与通信资源耗费较大等问题. 针对上述问题, 提出了联邦学习下高效的强安全的隐私保护安全聚合方案. 该方案利用对称同态加密技术实现了用户模型与全局模型的隐私保护, 利用秘密共享技术解决了用户掉线问题. 同时, 该方案利用Pedersen承诺来验证云服务器返回聚合结果的正确性, 利用BLS签名保护了用户与云服务器交互过程中的数据完整性. 此外, 安全性分析表明该方案是可证明安全的; 性能分析表明该方案是高效且实用的, 适用于大规模用户的联邦学习系统. 相似文献
9.
传统的联邦学习依赖一个中央服务器,模型训练过程易受单点故障和节点恶意攻击的影响,明文传递的中间参数也可能被用来推断出数据中的隐私信息.提出了一种基于区块链的去中心化、安全、公平的联邦学习模型,利用同态加密技术保护协同训练方的中间参数隐私,通过选举的联邦学习委员会进行模型聚合和协同解密.解密过程通过秘密共享方案实现安全的密钥管理,利用双线性映射累加器为秘密份额提供正确性验证.引入信誉值作为评估参与方可靠性的指标,利用主观逻辑模型实现不信任增强的信誉计算作为联邦学习委员会的选举依据,信誉值作为激励机制的参考还可以保障参与公平性.模型信息和信誉值通过区块链实现数据的防篡改和不可抵赖.实验表明,模型在训练准确率相比中心化学习模型略有损失的情况下,能够保障在多方协作的环境下以去中心化的方式训练模型,有效实现了各参与方的隐私保护. 相似文献
10.
针对基于同态加密的隐私保护神经网络中存在的计算效率低和精度不足问题,提出一种三方协作下支持隐私保护训练的高效同态神经网络(HNN)。首先,为降低同态加密中密文乘密文运算产生的计算开销,结合秘密共享思想设计了一种安全快速的乘法协议,将密文乘密文运算转换为复杂度较低的明文乘密文运算;其次,为避免构建HNN时产生的密文多项式多轮迭代,并提高非线性计算精度,研究了一种安全的非线性计算方法,从而对添加随机掩码的混淆明文消息执行相应的非线性算子;最后,对所设计协议的安全性、正确性及效率进行了理论分析,并对HNN的有效性及优越性进行了实验验证。实验结果表明,相较于双服务器方案PPML,HNN的训练速度提高了18.9倍,模型精度提高了1.4个百分点。 相似文献
11.
在高速网络环境中,对复杂多样的网络入侵进行快速准确的检测成为目前亟待解决的问题。联邦学习作为一种新兴技术,在缩短入侵检测时间与提高数据安全性上取得了很好的效果,同时深度神经网络(DNN)在处理海量数据时具有较好的并行计算能力。结合联邦学习框架并将基于自动编码器优化的DNN作为通用模型,建立一种网络入侵检测模型DFC-NID。对初始数据进行符号数据预处理与归一化处理,使用自动编码器技术对DNN实现特征降维,以得到DNN通用模型模块。利用联邦学习特性使得多个参与方使用通用模型参与训练,训练完成后将参数上传至中心服务器并不断迭代更新通用模型,通过Softmax分类器得到最终的分类预测结果。实验结果表明,DFC-NID模型在NSL-KDD与KDDCup99数据集上的准确率平均达到94.1%,与决策树、随机森林等常用入侵检测模型相比,准确率平均提升3.1%,在攻击类DoS与Probe上,DFC-NID的准确率分别达到99.8%与98.7%。此外,相较不使用联邦学习的NO-FC模型,DFC-NID减少了83.9%的训练时间。 相似文献
12.
13.
随着企业、政府以及私人等数据资产的不断增加,机器学习领域对于图像等分类应用需求也随之不断增涨.为了应对各种实际的需求,机器学习即服务(machine learning as a service, MLAAS)的云服务部署思想逐渐成为主流.然而,基于云服务实现的应用往往会带来严重的数据隐私安全问题.FPCBC(federated learning privacy-preserving classification system based on crowdsourcing aggregation)是一种基于众包聚合的联邦学习隐私保护分类系统.它将分类任务众包给多个边缘参与方并借助云计算来完成,不再使用联合训练理想模型的方式来得到可信度高的分类结果,而是让参与方先根据本地有限数据训练出的模型进行推理,然后再使用成熟的算法对推理结果聚合得到较高准确率的分类.重要的是,保证了数据查询方不会泄露任何隐私数据,很好地解决了传统MLAAS的隐私安全问题.在系统实现中,使用同态加密来对需要进行机器学习推理的图像数据加密;改善了一种众包的联邦学习分类算法,并通过引入双服务器机制来实现整个系统的隐私保护计算.通过实验和性能分析表明了该系统的可行性,且隐私保护的安全程度得到了显著提升,更适用于实际生活中对隐私安全需求较高的应用场景. 相似文献
14.
机器学习已成为大数据、物联网和云计算等领域的核心技术.机器学习模型训练需要大量数据,这些数据通常通过众包方式收集,其中含有大量隐私数据,包括个人身份信息(如电话号码、身份证号等)、敏感信息(如金融财务、医疗健康等信息).如何低成本且高效地保护这些数据是一个重要的问题.介绍了机器学习及其隐私定义和隐私威胁,重点对机器学习隐私保护主流技术的工作原理和突出特点进行了阐述,并分别按照差分隐私、同态加密和安全多方计算等机制对机器学习隐私保护领域的研究成果进行了综述.在此基础上,对比分析了机器学习不同隐私保护机制的主要优缺点.最后,对机器学习隐私保护的发展趋势进行展望,并提出该领域未来可能的研究方向. 相似文献
15.
16.
社会网络数据发布中的隐私保护研究进展 总被引:1,自引:0,他引:1
伴随Web2.0技术的发展和应用,许多社会网站被创建,使得关于个人的社会网络信息大量被收集和发布.为了保证个人隐私的安全.在进行社会网络数据发布的同时要进行隐私保护.社会网络数据发布的隐私保护是近年来新兴的研究课题,国外的学者已经提出了一些研究成果.但国内的研究尚处于起步阶段.文中对社会网络数据发布的隐私保护研究成果进行了总结.介绍了社会网络中存在的隐私信息类型和隐私攻击类型,重点阐述了隐私保护模型和技术,指出了社会网络数据发布中隐私保护存在的待解决的问题和面临的挑战. 相似文献
17.
近年来,机器学习迅速地发展,给人们带来便利的同时,也带来极大的安全隐患.机器学习的安全与隐私问题已经成为其发展的绊脚石.机器学习模型的训练和预测均是基于大量的数据,而数据中可能包含敏感或隐私信息,随着数据安全与隐私泄露事件频发、泄露规模连年加剧,如何保证数据的安全与隐私引发科学界和工业界的广泛关注.首先,介绍了机器学习隐私保护中的敌手模型的概念;其次总结机器学习在训练和预测阶段常见的安全及隐私威胁,如训练数据的隐私泄露、投毒攻击、对抗攻击、隐私攻击等.随后介绍了常见的安全防御方法和隐私保护方法,重点介绍了同态加密技术、安全多方计算技术、差分隐私技术等,并比较了典型的方案及3种技术的适用场景.最后,展望机器学习隐私保护的未来发展趋势和研究方向. 相似文献
18.
随着大数据、云计算等领域的蓬勃发展,重视数据安全与隐私已经成为世界性的趋势,不同团体为保护自身利益和隐私不愿贡献数据,形成了数据孤岛.联邦学习使数据不出本地就可被多方利用,为解决数据碎片化和数据隔离等问题提供了解决思路.然而越来越多研究表明,由谷歌首先提出的联邦学习算法不足以抵抗精心设计的隐私攻击,因此如何进一步加强隐私防护,保护联邦学习场景下的用户数据隐私成为一个重要问题.对近些年来联邦学习隐私攻击与防护领域取得的成果进行了系统总结.首先介绍了联邦学习的定义、特点和分类;然后分析了联邦学习场景下隐私威胁的敌手模型,并根据敌手攻击目标对隐私攻击方法进行了分类和梳理;介绍了联邦学习中的主流隐私防护技术,并比较了各技术在实际应用中的优缺点;分析并总结了6类目前联邦学习的隐私保护方案;最后指出目前联邦学习隐私保护面临的挑战,展望了未来可能的研究方向. 相似文献