首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
磷石膏脱硫钙渣是磷石膏化学分解后产生的以氧化钙为主要成分的尾渣。以氯化铵溶液浸取磷石膏脱硫钙渣并碳化浸取液以制备轻质碳酸钙是一种有效利用磷石膏脱硫钙渣中钙资源的方法。本文分析了该方法在不同氯化铵浓度下浸取液的组成、钙浸出率及pH,同时为了研究浸取液中NH4+、铁、铝、镁等对产品碳酸钙晶型的影响,配制了含有杂质离子的NH4Cl-NH3·H2O溶液,比较了其碳化产品与相同条件下脱硫钙渣碳化产品的晶型差异。结果表明,随氯化铵浓度升高,浸取液pH降低,铝含量降低,铁、镁含量升高。在氯化铵浓度范围内,NH4+对球霰石形成有促进作用,而铁、镁杂质对方解石形成有促进作用,由于铝离子存在形态不同,铝在1mol/L时对形成球霰石有促进作用,在大于1mol/L时对形成方解石有促进作用。当氯化铵浓度小于4mol/L时,各种杂质相互作用形成球霰石晶型,氯化铵浓度等于4mol/L时,各种杂质相互作用形成球霰石和方解石混合晶型。  相似文献   

2.
以十二烷基硫酸钠(SDS)为表面活性剂,以氯化钙、碳酸钠为原料,采用简单的复分解法成功制备了花状球霰石碳酸钙微球。利用扫描电镜(SEM)和X射线衍射仪(XRD)对样品进行了表征,结果表明花状碳酸钙微球分散性良好,直径为2~4μm,是由20~30 nm的粒子聚集而成的片状互相交叉在一起形成的插层状结构。研究了SDS质量浓度和碳酸钠溶液pH对产物形貌和结构的影响,初步探讨了花状球霰石碳酸钙微球的形成机理,结果表明SDS质量浓度、碳酸钠溶液pH均对碳酸钙的形状和结构产生影响。该研究为低成本合成球霰石碳酸钙提供了借鉴。  相似文献   

3.
为掌握温度与磁化预防碳酸钙结垢效果之间的关系,采用SEM表征、pH和电导率检测等方法,并结合不同温度下碳酸钙溶解平衡的热力学计算,阐明了温度对磁化防垢的影响机理,结果表明:在平行磁场作用下,温度的升高不利于磁化防垢;当温度从20℃升高到100℃时,溶液中Ca2+质量浓度和电导率分别降低了59.50%和13.78%,而pH则减小了0.42。Ca2+质量浓度和电导率降低的原因在于温度的升高有利于溶液中碳酸钙晶体的析出。此外,温度越高越易生成溶解度较低的方解石型碳酸钙晶体,而低温则有利于溶解度高且化学性质不稳定的球霰石型碳酸钙晶体的析出。研究成果可为不同类型管路磁化防垢提供参考。  相似文献   

4.
提升产品附加值对改善二氧化碳矿化过程的经济性具有重要意义。在二水硫酸钙与碳酸铵溶液进行间接矿化反应过程中,采用十六烷基三甲基溴化铵(CTAB)为晶型调节剂,可以获得球霰石晶型的碳酸钙。系统研究了反应时间、反应温度、CTAB加入量对碳酸钙晶型和形貌的影响,通过X射线衍射(XRD)、扫描电镜(SEM)和红外光谱(FT-IR)对碳酸钙的晶型、形貌进行了表征。结果表明:反应过程为先形成亚稳定相的球霰石,再向热力学最稳定的方解石相转化;添加CTAB能够明显地增强球霰石的稳定性;较低温度有利于球霰石的形成;在反应温度为30 ℃、二水硫酸钙和碳酸铵加入量均为0.1 mol/L、CTAB加入量为0.54 mmol/L条件下,碳酸钙中球霰石占比高达80%以上;CTAB在球霰石表面上的吸附降低了其表面能,从而抑制了球霰石向方解石的转化。  相似文献   

5.
以磷石膏为原料,采用氯化铵盐浸预处理方法获得磷石膏盐浸液,以该溶液为钙源矿化CO2制备球形球霰石型碳酸钙。首先采用4因素3水平正交试验确定最佳试验条件,再通过XRD、SEM分析探究不同温度下产物的物相与形貌的变化规律,结果表明:不添加任何晶型控制剂,在碳化温度为22℃、氨水加入量为10.00%、搅拌速度为650 r/min、CO2流速为0.3 L/min的条件下,可以得到球形球霰石型碳酸钙。在同一温度下,随着氨水加入量的增加,碳酸钙中球霰石含量升高。  相似文献   

6.
研究了不同回流速率和Ca2+浓度在流化床反应器中对结垢过程碳酸钙(Ca CO3)晶型的影响因素及相关机制。结果表明,流化床水力扰动可以阻止结晶前驱物向稳定相方解石转变。Ca2+质量浓度为2 000 mg/L时,回流速率提升促进非稳定相球状霰石和文石增长,最高占比可达90%以上(10 m/h),控制Ca CO3结晶终止于亚稳阶段。回流速率为8 m/h时,Ca2+浓度升高利于非稳定相玫瑰状及球状霰石生成,霰石含量可达90%以上,证明高钙浓度利于抑制霰石向方解石转变,形成有效阻垢。  相似文献   

7.
以聚丙烯酸(PAA)和十二烷基苯磺酸钠(SDBS)组成复合模板,复分解法制备出单分散性好、高球霰石含量的碳酸钙微球。利用扫描电子显微镜(SEM)和X射线衍射(XRD)对样品的形貌和晶型做了表征,考察了反应温度对碳酸钙晶体的影响,并对球霰石碳酸钙的稳定性做了详细探讨。研究结果表明:在60℃时能得到粒径分布均匀的球霰石,而PAA与SDBS形成的复合模板能有效稳定球霰石,在水溶液中静置25 h后,球霰石碳酸钙仍能得到很好的保存。  相似文献   

8.
以CaCl2-NH3-CO2为反应体系,采用分散鼓泡碳化法制备出单分散纯球霰石型碳酸钙微球。用扫描电镜(SEM、FE-SEM)、透射电镜(TEM)、X射线衍射(XRD)等手段对样品进行了表征。考察了反应初始pH、反应终止pH、反应初始温度、二氧化碳气体流速等因素对产物颗粒形貌和粒径的影响,并探讨了球霰石微球的形成机理。实验结果表明,与直接鼓泡碳化法相比,分散鼓泡碳化法形成的二氧化碳气泡数量多、大小均匀,能增大溶液中二氧化碳的过饱和度,有利于制备高纯度的单分散球霰石微球;反应初始温度低、二氧化碳气体流速大,均有利于球霰石的生成。最佳反应条件:反应初始pH为10.0,反应终止pH为7.0,二氧化碳气体流速为1 L/min。  相似文献   

9.
采用天冬氨酸(Asp)作为晶型诱导剂,采用碳化法合成了球霰石型碳酸钙。研究了二氧化碳通气速率、反应温度、天冬氨酸浓度对碳酸钙晶型和形貌的影响,通过X射线衍射(XRD)、扫描电镜(SEM)、激光粒度仪分析了产物的晶型特征。结果表明,二氧化碳通气速率对碳酸钙的晶型几乎没有影响,仅影响颗粒的形貌,其中球霰石物质的量分数达到95%,团聚颗粒尺寸随着二氧化碳通气速率的增加而增大;反应温度对碳酸钙晶型的影响较小,对颗粒的形貌、尺寸没有影响,在低温段(20℃)形成的球霰石物质的量分数约为96%,随着温度升高至60℃球霰石物质的量分数降低至87%;天冬氨酸的浓度显著影响碳酸钙的晶型,天冬氨酸浓度越低球霰石含量越低,并且碳酸钙颗粒的形貌由球形逐渐转变为针状,其尺寸也逐渐减小。研究结果对球霰石型碳酸钙的工业化生产提供了较好的借鉴。  相似文献   

10.
作为微生物诱导碳酸钙沉淀(MICP)反应的核心产物,碳酸钙的沉淀特性对其所处理材料的工程性能具有重要的影响。采用全因子实验、X射线衍射仪(XRD)、扫描电子显微镜(SEM)和原子力显微镜(AFM)表征,研究了乙酸钙浓度、菌液浓度和初始溶液pH对克雷白氏杆菌诱导碳酸钙沉淀特性的影响。结果表明,乙酸钙浓度为0.5 mol/L、菌液浓度为ODnature、初始溶液pH=10时,碳酸钙沉淀量最大。乙酸钙浓度为0.25~0.5 mol/L时,方解石和球霰石共存;乙酸钙浓度为1.0 mol/L时,碳酸钙晶体均为球霰石。乙酸钙浓度为0.25 mol/L时,菌液浓度和初始溶液pH对碳酸钙晶型的影响较大。碳酸钙晶体粒径为7.6~15.1 μm,方解石为菱面体状和片状,球霰石为球状及纺锤状。球霰石的平均弹性模量为15.9 GPa,方解石的平均弹性模量为22.7 GPa。三个主要环境因素对克雷白氏杆菌诱导生成的碳酸钙晶体沉淀量、晶体类型和晶体形貌具有调控作用;初始溶液pH对碳酸钙晶体粒径调控作用明显。这对于调控MICP过程及建立碳酸钙晶体的微观性能与其所处理材料的工程性能之间的关系提供...  相似文献   

11.
以磷尾矿经硝酸复合溶剂酸解、除铁铝净化、钙镁分离得到的钙源为原料,采用碳化法制备碳酸钙。主要探讨了制备纳米级碳酸钙过程中碳酸铵溶液浓度、碳化温度、碳酸铵加入量对产物纯度及钙回收率的影响,通过X射线衍射(XRD)、扫描电镜(SEM)、激光粒度仪对碳酸钙的物相、形貌、粒度进行分析。结果表明:在碳酸铵溶液浓度为1.00 mol/L、碳化温度为40 ℃、碳酸铵与钙离子物质的量比为1.1条件下,制得碳酸钙的纯度为89.27%、钙回收率为85.54%,碳酸钙呈纳米粒状。  相似文献   

12.
为了提高电石渣的附加值,在未使用晶型诱导剂的情况下,研究盐酸的用量、提取温度和二氧化碳的流量对电石渣合成碳酸钙形貌的影响。用XRD、FT-IR 表征了合成的产物,用扫描电子显微镜(SEM)观察研究了产物粒子的形状,结果表明,盐酸的用量和提取温度均会对碳酸钙的晶型和形状有影响。随着盐酸用量的增大,碳酸钙由不规则的方解石型转变为部分规则的球状结构,当浸取剂完全是盐酸的时候,碳酸钙的晶型从方解石型完全转变为球霰石型结构,颗粒粒径为4~5 μm。另外,当提取温度从18 ℃升高到30 ℃以上后,碳酸钙由方解石和球霰石两种晶体结构并存的状态转变为单一的球霰石型结构。  相似文献   

13.
以Na2CO3为沉淀剂,初步研究了多组分氯盐混合体系(0.6 mol MgCl2+1.1 mol LiCl+3.2 mol NaCl)中选择性沉镁的工艺规律。结果表明:在25~80 ℃,总C与总Mg物质的量比[n(CT)/n(MgT)]为 0.8~1.1时,25 ℃形成针状MgCO3·3H2O,40 ℃以上形成Mg5(CO34(OH)2·4H2O不规则片状团聚微球,其中40~50 ℃形成的片状物较为分散且粒径较小,导致固液分离困难。40 ℃时沉镁率最低。温度越高,Li2CO3越易形成,沉锂率越大。n(CT)/n(MgT)越大沉镁率和沉锂率越高。室温(25 ℃)、n(CT)/n(MgT)=1.0时,沉镁率达98%以上,且沉锂率<0.1%,镁锂分离效果最好。  相似文献   

14.
碳酸锂生产过程及最终产品中,微量镁的掺杂会直接影响碳酸锂的产品品质及其下游产品的加工应用,而高纯碳酸锂中微量镁的快速检测仍是一个难点。研究提出利用水溶性荧光探针检测碳酸锂中微量镁的方法,以水溶性极强的三(羟甲基)氨基甲烷对2-(2-羟基苯基)苯并噁唑进行修饰,构建了具有高灵敏度和高选择性的水溶性Mg2+荧光探针A。该方法可实现对碳酸锂溶液中Mg2+的快速荧光检测,并确定了探针A被Mg2+所激发的荧光信号强度与Mg2+浓度之间的定量关系。结果表明在水溶条件下检测含镁杂质的碳酸锂时,该方法对微量镁的检出限为2.014 9μmol/L,检测工作曲线相关系数达到0.991 5,检测灵敏度高,对高纯碳酸锂中微量镁的检测时间为3.666 s,可实现对Mg2+的快速质检。  相似文献   

15.
以高铁煤矸石为原料,先用硫酸酸浸的方法获得含有铝离子的硫酸铁溶液;采用分步沉淀的方法,使Fe3+完全转化为氢氧化铁凝胶而与Al3+分离;再将获得的氢氧化铁凝胶烘干后高温煅烧;最后将煅烧产物磨粉过筛,获得了氧化铁红。确定了合成氧化铁红的工艺条件是:酸浸液中铁离子的浓度为0.31 mol/L;分离Fe3+与Al3+时,氢氧化钠溶液的浓度为1 mol/L,且控制终点pH在3.0左右;干凝胶焙烧温度为800 ℃,时间为60 min。XRD及化学分析结果表明:所得产物为氧化铁红,符合GB/T 1863-2008《氧化铁颜料》的相关要求。  相似文献   

16.
以L-半胱氨酸(LCY)为改性剂改性聚环氧琥珀酸(PESA)得到了一种聚环氧琥珀酸衍生物L-半胱氨酸改性聚环氧琥珀酸(LCY-PESA),用红外光谱和核磁共振谱表征了LCY-PESA的物质结构,用红外光谱、X射线衍射光谱和扫描电镜研究了钙垢的晶型(形),探讨了LCY-PESA的静态阻垢、动态阻垢、静态缓蚀、分散氧化铁和生物降解等性能,通过量子化学计算方法研究了LCY-PESA的缓蚀机理。静态阻垢结果表明,在c(Ca2+)为400 mg·L-1、c(HCO3-)为800 mg·L-1的实验介质中,LCY-PESA投放量为6 mg·L-1,阻垢率即可达到94.6%;当c(Ca2+)为150 mg·L-1、c(Fe2+)为10 mg·L-1、LCY-PESA投放量为15 mg·L-1时,最小透光率为61.5%。动态阻垢测试显示:随着加药量的增加,动态污垢热阻减小,当加药量为1 mg·L-1时LCY-PESA的动态阻垢率比PESA提高了约15%。红外光谱、X射线衍射光谱和扫描电镜结果表明,LCY-PESA对钙垢有明显的晶格扭曲作用,把方解石变为球霰石,表现出良好的阻垢分散性能。该衍生物还表现出了优良的可生物降解性能。量子化学计算表明:LCY-PESA分子中的S原子和N原子对HOMO轨道的电荷密度影响较大,导致LCY-PESA的HOMO轨道和LUMO轨道的能隙差值小于PESA分子的能隙差值,因此LCY-PESA分子抑制金属腐蚀的效果好于PESA。  相似文献   

17.
刘晴  居沈贵 《化工进展》2011,30(4):886-890
采用二次合成法合成ZSM-5分子筛膜,并用XRD和SEM对其表面进行表征,所合成的膜为ZSM-5分子筛膜。对分子筛膜用Ag+、Cu2+、Fe3+金属离子进行改性,改变离子浓度,然后应用于模拟汽油中苯并噻吩和2,5-二甲基噻吩的分离性能研究,同时还考察了不同料液温度、再生次数对膜脱硫的影响。实验结果表明:负载Ag+浓度为0.2 mol/L时对苯并噻吩和2,5-二甲基噻吩的分离效果最好,分离因子最高可达到1.65;料液温度在常温(25 ℃)下脱硫效果最好,通过简单方法对膜进行再生,考察再生膜脱硫具有较好的稳定性。  相似文献   

18.
以山东海化集团有限公司老卤(主要组分为氯化镁)和纯碱煅烧冷凝液(富含碳酸铵和碳酸氢铵)为原料制备高纯氧化镁。通过实验确定了老卤净化精制工艺条件:向老卤中加入氯化钙溶液生成硫酸钙沉淀以脱除老卤中的硫酸根,控制钙离子与硫酸根物质的量比为0.9~1.0时硫酸根的脱除效果较好。以净化精制后的老卤和纯碱煅烧冷凝液为原料,在反应温度为65 ℃、搅拌转速为70 r/min、老卤镁离子质量浓度为15 g/L条件下反应,再经热解、陈化合成碱式碳酸镁;碱式碳酸镁经过滤、洗涤、干燥,在900 ℃煅烧2 h,得到合格的高纯氧化镁。研究表明,以山东海化老卤和纯碱煅烧冷凝液为原料可制得高纯氧化镁。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号