首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 研究质子交换膜燃料电池中扩散层厚度、孔隙率和催化剂颗粒尺寸等参数对电池性能的影响.方法 对直流道质子交换膜燃料电池建立综合的三维多组分数学模型,电化学反应速率采用团聚块模型修正,自主开发程序代码对电池的极化性能进行数值模拟,利用该模型研究了扩散层厚度、孔隙率和催化剂颗粒尺寸等参数对电池性能的影响.结果 增大气体扩散层孔隙率有利于提高电池的极化性能,但是应考虑孔隙率增加引起的不利影响;存在最佳的扩散层厚度使电池的极化性能最优;减小催化剂颗粒的特征尺寸可以提高电池的极化性能.结论 利用直流道质子交换膜燃料电池的综合三维数学模型,可以进行燃料电池极化性能的模拟,并能对电池的主要结构参数进行优化.  相似文献   

2.
复杂流道质子交换膜燃料电池的三维数值分析   总被引:5,自引:0,他引:5  
针对模拟复杂流道设计质子交换膜燃料电池(proton exchange membrane fuel cell ,PEMFC)的传热传质过程和电池电化学性能,提出一个稳态的、非等温的三维数学模型.应用模型对一个电极面积为3.12 cm×4 cm,20条通路的“蛇形”流道结构PEMFC进行数值计算,得到电池的流场、局部电流密度和组分浓度等的多维分布.并分析了不同渗透率对电池特性所产生的影响.结果表明,渗透率越高,压力降越小,有利于提高电池的性能.  相似文献   

3.
本文建立了质子导体固体氧化物燃料电池(H-SOFCs)的电化学模型,分析电能与乙烯共产的H-SOFCs的电化学性能、法拉第效率和能量效率。模拟结果表明:基于H-SOFCs制备乙烯需要向外界吸收热量,升高温度有利于提高乙烷的转化率和降低电池的极化损失;在所模拟的H-SOFCs中,欧姆过电势和活化过电势占主导地位,而浓差过电势几乎可忽略不计;由于质子导体电解质存在不可忽略的电子电导,造成电池内部短路,形成泄漏电流,泄漏电流密度随着输出电压的升高而增大,导致法拉第效率和能量效率下降。  相似文献   

4.
运用Fluent的PEM模块对质子交换膜燃料电池不同的加湿程度进行研究。分析了不同的加湿程度对燃料电池性能的影响,尤其讨论了在高电流密度情况下,浓差极化时燃料电池性能的影响。对80℃阴极气体分为不加湿、50%加湿和100%加湿进行对比,结果表明,低电流密度100%加湿性能更好,在高电流密度时50%加湿性能更好。另外详细分析了浓差极化区燃料电池内部水的摩尔浓度、氧气浓度分布与电池性能的影响关系,表明浓差极化仅在燃料电池的部分区域发生。不同的工作电流密度下选取合适的加湿度可以提高燃料电池的性能。  相似文献   

5.
使用计算流体动力学(CFD)方法,建立了三维直流道质子交换膜燃料电池的阳极和阴极模型。使用500W质子交换膜燃料电池电堆验证了电池的输出特性,分析了反应气体压力、电堆温度和气体增湿温度对电池输出电压的影响。根据内部流场的仿真结果,考察了反应气体压力、温度等操作条件因素对反应物和电流密度分布的影响,为提高车用质子交换膜燃料电池性能及工作的稳定性提供参考。  相似文献   

6.
为研究流场结构设计对电池内的流动、组分传递和电池性能等的影响,建立了一个稳态的三维非等温质子交换膜燃料电池数学模型,应用此模型对一个交指状流场设计的电池单体(电极面积为64 cm ×65 cm)进行了数值研究.数值计算得到了电池的温度、组分质量浓度和局部电流密度等的空间分布,分析了不同电池反应物湿度等对电池特性的影响.结果表明,受传质的影响,沟道下方阴极催化层的温度大于相应沟脊下方的区域;与饱和气流进气的基本工况相比,降低阴极的进气湿度能提高电池的性能,而降低阳极的进气湿度则会导致电池性能的下降.  相似文献   

7.
不同流道结构质子交换膜燃料电池内传递现象的三维模拟   总被引:3,自引:0,他引:3  
应用计算流体力学方法,建立了用于模拟质子交换膜燃料电池(PEMFC)传递特性和电化学性能的稳态、等温的三维数学模型。计算了传统流道和交叉梳状流道燃料电池的流场、电流密度和组分浓度等的多维分布。与传统流道的燃料电池相比,交叉梳状流道所产生的电极内强烈的强制对流机理提高了反应物和产物的传输速率,从而改善了电池的极限电流和极化性能等。利用模型估算的极化特性和文献实验结果吻合较好。  相似文献   

8.
电池流道结构对电池性能有直接影响,有必要对电池流道结构进行研究。在质子交换膜燃料电池流道内放置堵块可以增强反应气体的传质进而增强电池性能,但不同堵块对电池性能影响不同。采用数值模拟的方法,建立了三维、稳态的单直流道质子交换膜燃料电池数值模型。对阴极流道内放置不同堵塞率堵块的质子交换膜燃料电池进行研究,重点分析堵块产生的二次流对电池性能的影响。研究发现在流道内放置堵块产生的二次流可以增强电池性能,堵块堵塞率为0.8时电池净功率最大。反应气体在流道内受到堵块扰流作用,在堵块后方产生二次流增强了反应气体传质是电池性能增强的主要原因。  相似文献   

9.
通过聚集体模型描述催化层结构,建立了阴阳极包括蛇形流道、多孔扩散层、质子交换膜和催化层的完整质子交换膜燃料电池(PEMFC)三维流体力学模型,重点研究稳态条件下的基本工作参数分布和气体扩散层渗透率的影响.模型方程借助于计算流体力学软件-F luent求解.模拟的极化行为验证了模型的有效性,说明在燃料电池模型中充分考虑催化层的必要性.计算结果表明流体流速、压力、反应气体组成和局部电流密度等参数的空间分布明显,并且受气体扩散层渗透率影响明显,优化气体扩散层结构至关重要.  相似文献   

10.
质子交换膜燃料电池的湿度特性和水的迁移途径   总被引:2,自引:0,他引:2  
质子交换膜燃料电池的工作性能与湿度密切相关。本文研究了影响质子交换膜燃料电池水平衡的各种因素:电流密度上升,阴极生成的水量也逐渐增多;随着电地温度的提高,维持电池水平衡的电流密度必须提高;为减小欧姆损失,阳极气流需要增湿。本文分析了质子交换膜燃料电池水迁移的原理。为了利用反应生成的水,要采用水管理方法:水管理不足以获得足够含水率时,应采用加湿技术。本文比较了内外加湿法的优劣,借助数学建模的方法模拟了电池内部的工作过程,预测内部湿化系统可以免除气体交叉现象的出现,可以克服电池性能受到影响的弊病。  相似文献   

11.
目的 改变PEMFC(质子交换膜燃料电池)阴极和阳极的上下位置,测试重力对PEMFC水管理的影响,优化燃料电池阴阳极的摆放方式.方法 对应着阴阳极上下位置的不同,在阴极气体加湿(阳极不加湿)和阳极气体加湿(阴极不加湿)两种运行条件下,通过改变电子负载测定输出电压和电流.结果 温度在40~70℃变化时,对阳极在上,阳极气体加湿或不加湿;阴极在上,阴极气体加湿或不加湿4种情况,测得的电压/电流密度数据,绘出了4幅极化曲线图.结论 重力对PEMFC内液态水的排出有很大的影响,阴极在上时,如果液态水过剩,过剩液态水不容易排出电池阴极;而当阳极在上时,阴极过剩液态水相对容易从电池阴极排出.阳极在上的PEMFC电流密度性能要比阴极在上的要好.  相似文献   

12.
质子交换膜燃料电池(PEMFC)中传输现象及电化学反应是一个多维、多相、多尺度的动态复杂过程。与超算中心合作,利用CFD软件,对具有实际流场结构的全尺寸大面积PEMFC进行模拟,研究了流场结构对反应气体、水浓度、电流密度等的分布状态的影响,以及气体加湿度、操作压力和进气方式对电池性能的影响。结论认为,在正常条件下运行时,阴极流场板空气供应决定着催化层电化学反应的速率,因此以阴极流场板气体分布均匀性考察电流密度分布的均匀性,而不求解电化学方程,在一定条件下是简单、可行同时合理的。沿阴极流动方向,流速逐渐增加,流道内液态水体积分数逐渐增大,催化层内的电流密度和温度则逐渐减小。增加背压可以显著提高电池性能;阴极气体湿度在50%时电池性能最好。研究结果应用于25kW电堆的制造与运行,效果良好。  相似文献   

13.
为了研究质子交换膜燃料电池的扩散层结构对燃料电池导电、排水、导气等性能的影响,利用COMSOL Multiphysics软件对质子交换膜燃料电池进行仿真模拟分析,主要针对扩散层孔隙率沿厚度方向梯度变化的规律及燃料电池阴极侧传质过程和电池性能进行了模拟分析。结果表明:采用梯度结构的扩散层可以减小阴极水淹现象的发生,孔隙率梯度分布的扩散层电池性能优于孔隙率均匀分布的扩散层的电池性能;在平均孔隙率相同时,孔隙率梯度结构变化越大,阴极侧排水能力越强,液态水残留量越少。  相似文献   

14.
目的研究质子交换膜燃料电池运行中电池的工作压力、反应气体流量对电池性能的影响.方法对质子交换膜电池单体在不同工作压力、不同气体流量下的电池性能变化做了测试并将得到的实验数据进行对比及理论分析.结果通过实验得出了压力和气体流量对电池性能影响的规律曲线.结论PEM燃料电池的性能随着压力的升高而提高.随气体流量的变化,可将曲线划分为气体供应短缺、饱和和过量三个区域.同时按照电流密度计算所得到的气体消耗量可以在实验中得到很好地验证.实验结果对质子交换膜燃料电池结构的优化和设计具有重要的指导意义.  相似文献   

15.
为研究熔融碳酸盐燃料电池内发生的传热传质和电化学反应等物理化学过程,建立了一个三维数学模型.模型综 合考虑了电池内的流体流动、传热、多组分传递、电化学反应及电压-电流关系等.利用计算流体动力学(CFD)技术对数 学模型进行了数值模拟计算,得到了不同流动形式(顺流、逆流和叉流)电池内的温度和组分的体积分数等的详细的空 间分布,分析和讨论了相应的传递机理.结果表明阴极的出口温度大于阳极,且逆流方式有利于降低出口温度;化学反应 速度主要取决于阳极燃料气体的体积分数.  相似文献   

16.
质子交换膜(PEM)燃料电池操作参数的优化是提高其性能和稳定性的重要手段.介绍了燃料电池测试系统的主要功能和使用方法,并运用此系统试对PEM燃料电池动态特性进行了测试.分析了操作参数对PEM燃料电池性能的影响.研究结果发现仅加湿空气或氢气,电池电流密度低,为了获得良好的电池性能,空气和氢气必须同时加湿;电池的加热温度过高或过低,PEM燃料电池的电流密度都很低;加湿温度过低时的电池电流密度比加湿温度过高时的电池电流密度更低;电池温度343 K和加湿温度333 K时,燃料电池的电流密度最大;加大反应气体空气的流量,燃料电池的电流密度一直增大;而增大氢气流量时,电池的电流密度先增大,而后趋于平稳.实验结果对于促进PEM燃料电池的商业化具有重要意义.  相似文献   

17.
目的 研究微生物燃料电池阳极区域内部传质过程.方法 在微生物燃料电池阳极区域传质过程分析的基础上,提出阳极区域传质的几何模型,建立底物扩散传质、质量守恒、生物反应动力学和电极反应动力学模型.通过对阳极区域传质过程的模拟,研究了底物一次性投加和多次投加过程中底物质量浓度、生物量和电极表面生物膜层的变化规律,同时考察了生物量和底物质量浓度对微生物燃料电池产电的影响.结果 在底物总投加量一定的情况下,多次投加培养的生物量比一次性投加培养的生物量多,底物分解速率多次投加快于一次投加;增加生物量有利于降低活化极化和浓差极化;高底物质量浓度增加了浓差极化,低底物质量浓度增加了活化极化.结论 利用微生物燃料电池数学模型可以对电池内部物质传递及生化反应过程进行数值模拟.  相似文献   

18.
商业尺寸质子交换膜燃料电池性能实验研究   总被引:1,自引:1,他引:0  
实验测试了不同电池操作温度和反应气加湿温度下,反应面积为256 cm2商用质子交换膜燃料电池的性能,通过对极化曲线的测量,重点分析了操作温度与加湿温度对不同厚度质子膜含水量及电池阴极水泛滥的影响.结果表明,质子膜含水量及阴极液态水移除主要取决于加湿温度和操作温度的最佳匹配.当操作温度低于加湿温度时,电池性能随操作温度升...  相似文献   

19.
质子交换膜燃料电池性能衰退与寿命预测研究需要依靠多物理仿真模型。为了满足燃料电池堆对仿真工具的要求,单电池模型被串联起来建立了一个燃料电池堆二维模型。在每个单电池内,考虑了各个组件的气体成分,带电离子和水分子的耦合传输特性。以10个单电池组成的电堆为例,将电池堆性能的影响因素归结为内部性能参数和操作运行过程中的控制参数。得到了燃料电池堆的气体浓度分布、阴阳极湿度分布、局部电流密度分布和整体温度分布等。最后对电池内部性能参数和操作参数进行分析,发现提高催化层活性比表面积可改善活化损失;提高质子交换膜电导率可改善欧姆损失;提高扩散层孔隙率可改善浓差损失。为PEMFC性能优化设计和操作条件的选择打下基础。  相似文献   

20.
分析采用不同氧化剂和改变气体压力对质子交换膜燃料电池性能的影响,用测定电压/电流密度曲线的方法研究了质子交换膜燃料电池的性能特点以及电池温度对电池性能的影响,并对氢-氧和氢-空气燃料电池做了性能对比,实验结果是氧气作氧化剂比空气作氧化剂性能好得多,而且随着温度的增加性能有所改善.压力实验结果是随着气体压力的增大电池性能增强,输出功率增大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号