首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The cetane number of a fuel is an important factor in determining the quality of ignition in compression ignition (CI) engines. The significance of accurate measurement of cetane number has become even greater since the use of alternative fuels and modern CI engines. In this work, the comparison of different methods of cetane value measurement for fuels with different chemical composition such as ultra low sulfur diesel (ULSD), synthetic jet fuel (S-8) and military grade jet fuel (JP-8), trace amounts of additives and biodiesel blends under different conditions is reported. The cetane index was calculated by ASTM D4737 and ASTM D976 and the derived cetane number (DCN) was measured using an Ignition Quality Tester (IQT) as a basis of comparison with the cetane index. The best agreement among three methods was observed for ULSD, while S-8 showed the largest discrepancy. The cetane indices for S-8 were 70.2 and 67.3 calculated using D4737 and D976 respectively, while the DCN was 52.8. The addition of biodiesel to ultra low sulfur diesel (ULSD) fuel alters the chemical properties of the fuel. The derived cetane number reflected the increase in ignition quality with the addition of biodiesel while calculations for cetane index did not. The cetane indices for a commercial B20 were 45.30 and 46.70 while the DCN showed a significantly higher value of 48.50. Blending 5% oxidized biodiesel with ULSD caused an 8% increase in the derived cetane number of the blend. The cetane index of the 5% biodiesel was not significantly affected by oxidation. The effects of fuel additives on cetane measurements were reflected in the DCN measurements, but not with cetane indices.  相似文献   

2.
Biodiesel derived from camelina as well as other feedstocks including palm, mustard, coconut, sunflower, soybean and canola were prepared via the conventional base-catalyzed transesterification with methanol. Fatty acid profiles and the fuel properties of biodiesel from different vegetable oils were analyzed and tested in accordance with ASTM D6751. Camelina biodiesel contains 10–12%, 37–40%, and 48–50% saturated, monounsaturated and polyunsaturated components, respectively. Some fuel properties of camelina biodiesel are comparable to that of sunflower biodiesel including kinematic viscosity (40 °C), flash point, cloud point, cold filter plugging point, and oil stability index. However, camelina biodiesel exhibited the poorest oxidative stability, highest distillation temperature and has the highest potential to form coke during combustion, all of which are attributed to the high amounts of n-3-fatty acids in camelina oil. While neat camelina biodiesel may exhibit undesirable fuel properties, it is very comparable with soybean biodiesel at the B20 level.  相似文献   

3.
This work presents the physical-chemical properties of fuel blends of waste cooking oil biodiesel or castor oil biodiesel with diesel oil. The properties evaluated were fuel density, kinematic viscosity, cetane index, distillation temperatures, and sulfur content, measured according to standard test methods. The results were analyzed based on present specifications for biodiesel fuel in Brazil, Europe, and USA. Fuel density and viscosity were increased with increasing biodiesel concentration, while fuel sulfur content was reduced. Cetane index is decreased with high biodiesel content in diesel oil. The biodiesel blends distillation temperatures T10 and T50 are higher than those of diesel oil, while the distillation temperature T90 is lower. A brief discussion on the possible effects of fuel property variation with biodiesel concentration on engine performance and exhaust emissions is presented. The maximum biodiesel concentration in diesel oil that meets the required characteristics for internal combustion engine application is evaluated, based on the results obtained.  相似文献   

4.
In this study, optical and thermal properties of normal grade and winter grade palm oil biodiesel were investigated. Surface Plasmon Resonance and Photopyroelectric technique were used to evaluate the samples. The dispersion curve and thermal diffusivity were obtained. Consequently, the variation of refractive index, as a function of wavelength in normal grade biodiesel is faster than winter grade palm oil biodiesel, and the thermal diffusivity of winter grade biodiesel is higher than the thermal diffusivity of normal grade biodiesel. This is attributed to the higher palmitic acid C(16:0) content in normal grade than in winter grade palm oil biodiesel.  相似文献   

5.
Biodiesel is recognized as a clean alternative fuel or as a fuel additive to reduce pollutant emissions from combustion equipment. Because cultivated land is too limited to grow seed-oil plants sufficient to produce both food and biodiesel, non-land-based oleaginous materials have been considered important sources for the production of the latter. In this study, the discarded parts of mixed marine fish species were used as the raw material to produce biodiesel. Marine fish oil was extracted from the discarded parts of mixed marine fish and refined through a series of pretreatment processes. The refined marine fish oil was then transesterified with methyl alcohol to produce biodiesel, which was used thereafter as engine fuel to investigate its engine performance and emission characteristics. The experimental results show that, compared with commercial biodiesel from waste cooking oil, marine fish-oil biodiesel has a larger gross heating value, elemental carbon and hydrogen content, cetane index, exhaust gas temperature, brake fuel conversion efficiency, NOx and O2 emissions, and black smoke opacity and a lower elemental oxygen content, fuel consumption rate, brake-specific fuel consumption rate, equivalence ratio, and CO emission. Compared with ASTM No. 2D diesel, both marine fish-oil and waste cooking-oil biodiesels appear to have a lower gross heating value, cetane index, exhaust gas temperature, equivalence ratio, black smoke opacity, elemental carbon content, and CO emission and a higher fuel consumption rate and elemental oxygen content.  相似文献   

6.
Umer Rashid 《Fuel》2008,87(3):265-273
Present work reports an optimized protocol for the production of biodiesel through alkaline-catalyzed transesterification of rapeseed oil. The reaction variables used were methanol/oil molar ratio (3:1-21:1), catalyst concentration (0.25-1.50%), temperature (35-65 °C), mixing intensity (180-600 rpm) and catalyst type. The evaluation of the transesterification process was followed by gas chromatographic analysis of the rapeseed oil fatty acid methyl esters (biodiesel) at different reaction times. The biodiesel with best yield and quality was produced at methanol/oil molar ratio, 6:1; potassium hydroxide catalyst concentration, 1.0%; mixing intensity, 600 rpm and reaction temperature 65 °C. The yield of the biodiesel produced under optimal condition was 95-96%. It was noted that greater or lower the concentration of KOH or methanol than the optimal values, the reaction either did not fully occur or lead to soap formation.The quality of the biodiesel produced was evaluated by the determinations of important properties such as density, specific gravity, kinematic viscosity, higher heating value, acid value, flash point, pour point, cloud point, combustion point, cold filter plugging point, cetane index, ash content, sulphur content, water content, copper strip corrosion value, distillation temperature and fatty acid composition. The produced biodiesel was found to exhibit fuel properties within the limits prescribed by the latest American Standards for Testing Material (ASTM) and European EN standards.  相似文献   

7.
Heating deteriorates the physicochemical properties of a vegetable oil for both edible and biofuel uses. The parameters for edible olive oil are established by European Union regulations and by the International Olive Council. The properties of a vegetable oil to be used as a source for biodiesel production are indicated by the German DIN 51605 for rapeseed oil. Biofuel properties are described by the European EN 14214 and the North American ASTM 6751 standards for biodiesel. It is useful to know how temperature and heating duration influence the physicochemical properties of olive oil. Free acidity, refractive index and myristic acid were not significantly influenced by temperature and heating duration. K232, K266, K270, K274, p-anisidine value, totox index, kinematic viscosity (at 30, 40, 50 °C), estimated higher heating value, relative density, and cetane number increased during olive oil heating. The biological properties: iodine value, oxidative stability index, antiradical (2,2-diphenyl-1-picrylhydrazyl radical, DPPH?) activity, and phenol content, decreased when time and temperature increased. Fatty acid methyl esters were highly influenced by the applied variables. Almost all the fatty acid methyl esters, except myristic, stearic, and arachidic acid esters, were influenced by the combined effect of temperature and time in a very highly significant level. These results show how temperature and duration of heating influence extra virgin olive oil degradation for both edible use and biodiesel production.  相似文献   

8.
The transesterification reaction of used frying oil by means of ethanol, using sodium hydroxide, potassium hydroxide, sodium methoxide, and potassium methoxide as catalysts, was studied. The objective of the work was to characterize the ethyl esters for its use as biodiesels in compression ignition motors. The operation variables used were ethanol/oil molar ratio (6:1–12:1), catalyst concentration (0.1–1.5 wt.%), temperature (35–78 °C), and catalyst type. The evolution of the process was followed by gas chromatography, determining the concentration of the ethyl esters at different reaction times. The biodiesel was characterized by its density, viscosity, flash point, combustion point, cold filter plugging point, cloud and pour points, Conradson carbon residue, characteristics of distillation, cetane index and high heating value according to ISO norms. The biodiesel with the best properties was obtained using an ethanol/oil molar ratio of 12:1, potassium hydroxide as catalyst (1%), and 78 °C temperature. The density, viscosity, cetane index, Conradson carbon residue and calorific power of the biodiesel obtained had values close to those of a no. 2 diesel. On the contrary, the cold filter plugging point, and cloud and pour points are higher than the conventional diesel fuel. Although higher, flash and combustion points fulfil the norms for ethyl esters derived from vegetable oils. In consequence, the final product obtained had very similar characteristics to a no. 2 diesel oil, and therefore, these ethyl esters might be used as an alternative to fossil fuels. The two-stage transesterification was better than the one-stage process, and the yields of ethyl esters were improved 30% in relation with the one-stage transesterification.  相似文献   

9.
The soapstock of a mixture of marine fish was used as the raw material to produce the biodiesel in this study. The soapstock was collected from discarded fish products. Crude fish oil was squeezed from the soapstock of the fish and refined by a series of processes. The refined fish oil was transesterified to produce biodiesel. The fuel properties of the biodiesel were analyzed. The experimental results showed that oleic acid (C18:1) and palmitic acid (C16:0) were the two major components of the marine fish-oil biodiesel. The biodiesel from the mixed marine fish oil contained a significantly greater amount of polyunsaturated fatty acids than did the biodiesel from waste cooking oil. In addition, the marine fish-oil biodiesel contained as high as 37.07 wt.% saturated fatty acids and 37.3 wt.% long chain fatty acids in the range between C20 and C22. Moreover, the marine fish-oil biodiesel appeared to have a larger acid number, a greater increase in the rate of peroxidization with the increase in the time that it was stored, greater kinematic viscosity, higher heating value, higher cetane index, more carbon residue, and a lower peroxide value, flash point, and distillation temperature than those of waste cooking-oil biodiesel.  相似文献   

10.
The relatively high cost of refined oils render the resulting fuels unable to compete with petroleum derived fuel. In this study, biodiesel is prepared from palm fatty acid (PFA) which is a by-product of palm oil refinery. The process conditions were optimized for production of palm fatty acid methyl esters. A maximum conversion of 94.4% was obtained using two step trans-esterification with 1:10 molar ratio of oil to methanol at 65°C. Sulfuric acid and Sodium hydroxide were used as acid and base catalyst respectively. The composition of fatty acid methyl esters (FAME) obtained was similar to that of palm oil. The biodiesel produced met the established specifications of biodiesel of American Society for Testing and Materials (ASTM). The kinetics of the trans-esterification reaction was also studied and the data reveals that the reaction is of first order in fatty acid and methanol (MeOH) and over all the reaction is of second order.  相似文献   

11.
Trifluoromethanesulfonic acid (TFMSA) was used to reduce the high free fatty acids (FFA) content in sludge palm oil (SPO). The FFA content of SPO was converted to fatty acid methyl ester (FAME) via esterification reaction. The treated sludge palm oil was used as a raw material for biodiesel production by transesterification process. Several working parameters were optimized, such as dosage of catalyst, molar ratio, reaction temperature and time. Less than 2% of the FFA content was the targeted value. The results showed that the FFA content of SPO was reduced from 16% to less than 2% using the optimum conditions. The yield of the final product after the alkaline transesterification was 84% with 0.07% FFA and the ester content was 96.7%. All other properties met the international standard specifications for biodiesel quality such as EN 14214 and ASTM D6751.  相似文献   

12.
Biodiesel is a cleaner burning fuel than petrodiesel and a suitable replacement in diesel engine. It is produced from renewable sources such as vegetable oils or animal fats. Biodiesel fuel was prepared from castor (CSO), palm kernel (PKO) and groundnut (GNO) oils through alkali transesterification reaction. The biodiesel produced was characterized as alternative diesel fuel. Fuel properties such as specific gravity, viscosity, calorific (combustion) value, The CSO, PKO and GNO were measured to evaluate the storage/oxidative stability of the oils to compare them with commercial petrodiesel. The biodiesel produced had good fuel properties with respect to ASTM D 6751 and EN 14214 specification standards, except that the kinematic viscosity of castor oil biodiesel was too low. The viscosity of castor oil biodiesel at different temperatures was in the range of 4.12–7.21 mm2/s. However, promising results which conformed to the above specification standards were realized when castor oil biodiesel was blended with commercial petrodiesel. At 28 °C the specific gravity recorded for CSO, PKO and GNO biodiesel was higher than the values obtained for petrodiesel. Commercial petrodiesel had the highest oxidative stability than biodiesel produced from CSO, PKO and GNO oils.  相似文献   

13.
Esters from vegetable oils have attracted a great deal of interest as substitutes for petrodiesel to reduce dependence on imported petroleum and provide a fuel with more benign environmental properties. In this work biodiesel was prepared from cottonseed oil by transesterification with methanol, using sodium hydroxide, potassium hydroxide, sodium methoxide and potassium methoxide as catalysts. A series of experiments were conducted in order to evaluate the effects of reaction variables such as methanol/oil molar ratio (3:1–15:1), catalyst concentration (0.25–1.50%), temperature (25–65 °C), and stirring intensity (180–600 rpm) to achieve the maximum yield and quality. The optimized variables of 6:1 methanol/oil molar ratio (mol/mol), 0.75% sodium methoxide concentration (wt.%), 65 °C reaction temperature, 600 rpm agitation speed and 90 min reaction time offered the maximum methyl ester yield (96.9%). The obtained fatty acid methyl esters (FAME) were analyzed by gas chromatography (GC) and 1H NMR spectroscopy. The fuel properties of cottonseed oil methyl esters (COME), cetane number, kinematic viscosity, oxidative stability, lubricity, cloud point, pour point, cold filter plugging point, flash point, ash content, sulfur content, acid value, copper strip corrosion value, density, higher heating value, methanol content, free and bound glycerol were determined and are discussed in the light of biodiesel standards such as ASTM D6751 and EN 14214.  相似文献   

14.
This work illustrates morpholine assisted transesterification of crude canola oil, corn oil and coffee oil (extracted from spent coffee grounds) using NaOH as a homogeneous base catalyst. Addition of morpholine resulted in a two-fold enhancement in kinetics of transesterification. The properties of the biodiesel final product were evaluated by fuel standard tests and the results were compared with ASTM D6751 standards. Biodiesel produced from canola, coffee and corn oils was found to have a high cetane number (52.5–55.1) and good flash point (140 °C).  相似文献   

15.
A fuel quality survey of biodiesel blends collected in June 2009 from 26 Michigan retail stations was performed, 8 months after the publication of ASTM D7467. Measured blend levels were not consistent in stations where pump labels indicate specific biodiesel blend levels. Fatty acid methyl ester (FAME) analyses revealed that majority of the samples are soybean oil-based (SBO) biodiesel. Full compliance with the ASTM D7467 requirements for kinematic viscosity and flash point (FP) were observed with the biodiesel blends; all but one for cetane number (CN). Barely half of the samples were able satisfy the total acid number (TAN) specification with select samples reflecting as high as 1.6 mg KOH/g. The most pressing is that only 45% were able to meet the 6 h induction period (IP) requirement; out of those that did not qualify 42% are even low blends hinting the degraded quality of the biodiesel component. Inconsistencies on the expected correlations of the tested properties were evident, suggesting that additives may be present in many samples. When compared with results from a similar survey in 2007, the properties of the 2009 samples are even poorer, indicating poor observance of fuel standards by the producers.  相似文献   

16.
Transesterification of refined cottonseed oil (CSO) was carried out with methanol, ethanol, 1-butanol, and various mixtures of these alcohols to produce biodiesel. In the mixed alcohol transesterifications, formation of methyl esters was favored over ethyl and butyl esters. The influence of ester head group on fuel properties was determined. Specifically, cold flow properties, lubricity, and energy content improved in the order: CSO butyl esters (CSBE, best) > ethyl esters (CSEE) > methyl esters (CSME). Higher kinematic viscosities (KVs) as well as lower iodine values (IVs) and wear scars were observed with larger ester head groups. Blends of CSME, CSEE and CSBE exhibited properties intermediate to the neat esters. All ester samples were within the limits prescribed in ASTM D6751 and EN 14214 for cetane number, acid value (AV), glycerol (free and total) content, sulfur, and phosphorous. Also examined was the influence of blending alkyl esters with petrodiesel. All blends exhibited improved cold flow properties versus unblended alkyl esters. Enhanced lubricity was observed after blending. With increasing content of biodiesel, higher KVs and lower energy contents were observed. Finally, all blends were within the limits specified in ASTM D975 and D7467 for AV, KV and sulfur.  相似文献   

17.
The safflower (Carthamus tinctorius L.) oil was extracted from the seeds of the safflower that grows in Diyarbakir, SE Anatolia of Turkey. Biodiesel has been prepared from safflower seed by transesterification of the crude oil under microwave irradiation, with methanol to oil molar ratio of 10:1, in the presence of 1.0% NaOH as catalyst. The conversion of C. tinctorius oil to methyl ester was over 98.4% at 6 min. The important fuel properties of safflower oil and its methyl ester (biodiesel) such as density, kinematic viscosity, flash point, iodine number, neutralization number, pour point, cloud point, cetane number are found out and compared to those of no. 2 petroleum diesel, ASTM and EN biodiesel standards. Compared with conventional heating methods, the process using microwaves irradiation proved to be a faster method for alcoholysis of triglycerides with methanol, leading to high yields of biodiesel.  相似文献   

18.
Due to an increase in the commercial use of biodiesel and biodiesel blends, both ASTM D 6751 and EN 14214 include the acid number (AN) as an important quality parameter. It was found that determination of AN of biodiesel and biodiesel blends using the ASTM D 974 results in large values of repeatability (up to 73.41%) and larger percentage error (up to 42.88%). Therefore, ASTM D 974 has been modified using a lower concentration of base (0.02 M KOH instead of 0.1 M KOH) as well as reducing the amount of toxic titration solvent from 100 mL to only 10 mL. This makes the modified ASTM D 974 as a green analytical method which uses a reduced amount of toxic solvent. This modified method significantly reduced the maximum percentage error from 42.88 to 5.92%. The application of this modified ASTM D 974 for the determination of AN of biodiesel and biodiesel blends was studied. The accuracy of this modified ASTM D 974 for biodiesel (B100) was measured to be within 3.51% over the AN range of 0.313–0.525 mg KOH/g and maximum repeatability was decreased from 8.37 to 2.75% within this AN range which is far below the ASTM D 974 stated repeatability specifications. For B20, B10, B5, B2, and B1, the most accurate values were measured at AN values of 0.177, 0.067, 0.072, 0.126, and 0.096 mg KOH/g, respectively. Excellent linearity values of R 2 for calculated and experimentally determined AN were obtained. The difference between the experimental and the calculated AN for all biodiesel and biodiesel blend samples was within ± 0.018 mg KOH/g. This extensive study has demonstrated that this modified ASTM D 974 is a reliable method for the determination of AN and could be used for establishing the specifications of AN for biodiesel and biodiesel blends ranging from B1 to B20 in quality standards.  相似文献   

19.
Biodiesel is an alternative diesel fuel derived mainly from the transesterification of plant oils with methanol or ethanol. This fuel is generally made from commodity oils such as canola, palm or soybean and has a number of properties that make it compatible in compression‐ignition engines. Despite its many advantages, biodiesel has poor cold flow properties that may impact its deployment during cooler months in moderate temperature climates. This work is a study on the use of skeletally branched‐chain‐fatty acid methyl esters (BC‐FAME) as additives and diluents to decrease the cloud point (CP) and pour point (PP) of biodiesel. Two BC‐FAME, methyl iso‐oleate and methyl iso‐stearate isomers (Me iso‐C18:1 and Me iso‐C18:0), were tested in mixtures with fatty acid methyl esters (FAME) of canola, palm and soybean oil (CaME, PME and SME). Results showed that mixing linear FAME with up to 2 mass% BC‐FAME did not greatly affect CP, PP or kinematic viscosity (ν) relative to the unmixed biodiesel fuels. In contrast, higher concentrations of BC‐FAME, namely between 17 and 39 mass%, significantly improved CP and PP without raising ν in excess of limits in the biodiesel fuel standard specification ASTM D 6751. Furthermore, it is shown that biodiesel/Me iso‐C18:0 mixtures matched or exceeded the performance of biodiesel/Me iso‐C18:1 mixtures in terms of decreasing CP and PP under certain conditions. This was taken as evidence that additives or diluents with chemical structures based on long‐chain saturated chains may be more effective at reducing the cold flow properties of mixtures with biodiesel than structures based on long‐chain unsaturated chains.  相似文献   

20.
Bryan R. Moser 《Fuel》2012,92(1):231-238
Refined hazelnut, walnut and high-oleic peanut oils were converted into fatty acid methyl esters using catalytic sodium methoxide and evaluated as potential biodiesel fuels. These feedstocks were of interest due to their lipid production potentials (780–1780 L ha?1 yr?1) and suitability for marginal lands. Methyl oleate was the principal constituent identified in hazelnut (HME; 76.9%) and peanut (PME; 78.2%) oil methyl esters. Walnut oil methyl esters (WME) were comprised primarily of methyl esters of linoleic (60.7%), oleic (15.1%) and linolenic (12.8%) acids. PME exhibited excellent oxidative stability (IP 21.1 h; EN 14112) but poor cold flow properties (CP 17.8 °C) due to its comparatively high content of very-long chain fatty esters. WME provided low derived cetane number and oxidative stability (IP 2.9 h) data as a result of its high percentage of polyunsaturated fatty esters. HME yielded a satisfactory balance between all fuel properties when compared to the biodiesel standards ASTM D6751 and EN 14214 due to its high content of monounsaturated fatty esters. Also explored were the properties of blends of HME, PME and WME in ultra-low sulfur (<15 ppm) diesel (ULSD) fuel and comparison to petrodiesel standards ASTM D975, D7467 and EN 590. With increasing content of biodiesel, the oxidative stability, cold flow properties and calorific value of ULSD was negatively affected, whereas lubricity was markedly improved. Kinematic viscosity, specific gravity and surface tension were impacted to lesser extents by addition of biodiesel to ULSD. In summary, HME, PME and WME are suitable based on their fuel properties as biodiesel fuels and blend components in ULSD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号