首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
分析金属装甲弹道极限的两阶段模型   总被引:2,自引:0,他引:2  
基于大量弹道试验分析,考虑靶板背面自由边界的影响,提出一个分析刚性尖头弹垂直撞击中等厚度理想弹塑性材料靶板弹道极限的两阶段工程模型。由圆柱形空腔膨胀理论和功能原理导出第一阶段延性扩孔耗能表达式,按薄靶板最小穿透能量的简化分析模型计算第二阶段耗能,由两阶段总的耗能最小确定第一阶段的侵彻深度,从而得到最小穿透能量的解析解。经与金属装甲弹道试验比较,表明两阶段工程模型计算结果与试验吻合较好,比现有单一延性扩孔模型精度高。  相似文献   

2.
建立了平头弹正侵彻Weldox 460 E钢靶的SPH模型,通过实验数据对模型进行了验证。应用验证的SPH模型模拟了2~12 mm厚单层靶的侵彻过程,建立了弹道极限速度与靶板厚度关系的经验公式;开展了平头弹正侵彻多层靶的数值模拟,分析了靶板的层数、总厚度、厚度组合对其抗侵彻性能的影响。基于单层靶弹道极限速度的经验公式,得到了预测多层靶的弹道极限速度的解析模型。将解析模型的弹道极限速度计算结果与SPH的模拟结果进行了比较,结果表明两者比较接近,相对误差基本都在10%以内。  相似文献   

3.
高速破片穿透船用钢靶剩余特性研究   总被引:7,自引:0,他引:7  
梅志远  朱锡  张立军 《工程力学》2005,22(4):235-240
着重讨论了高速(800m/s~1800m/s)柱形(或立方体形)钢破片(质量3.3g~60g)对不同厚度的某型船体钢靶(4mm~10mm)的穿透特性和剩余速度问题;首先给出穿透过程的分析模型,认为钢破片对船体钢靶的穿透能主要包括:弹、靶挤压塑性变形能和环向剪切塑性变形能;以能量分析和德.马尔模型为基础,给出了相应的半经验公式;在32组有效穿透实验测试数据的基础上,对相关系数进行数值拟合及动态修正;通过计算结果和试验测试结果的对比,得到的半经验公式能较好描述高速破片穿透船体钢板后的剩余速度。  相似文献   

4.
为研究弹体头部形状对碳纤维层合板抗冲击性能的影响,利用一级气炮发射卵形头弹、半球形头弹和平头弹,对2 mm厚碳纤维层合板进行了冲击实验。利用公式拟合处理实验数据,揭示弹体头部形状对靶板弹道极限与能量吸收的影响,并且分析靶板冲击损伤形貌及机理特征。研究结果表明:平头弹弹道极限最高,半球形头弹次之,卵形头弹最低。弹体在低速度冲击时,弹体头部形状对靶板能量吸收率的影响更为显著。平头弹冲击时,靶板迎弹面受到均匀分布的环向剪切力,纤维同时被剪切,基体发生大面积剪切破坏。半球形头弹冲击时,靶板迎弹面受到非均匀分布的剪切力和挤压作用,纤维发生剪切断裂和拉伸断裂,基体发生剪切破坏和挤压破碎。卵形头弹冲击时,纤维发生单一的拉伸断裂,而基体则发生挤压破碎。弹体头部形状对靶板损伤的影响主要集中在迎弹面和中部纤维层。  相似文献   

5.
从挤凿破坏机理出发,考虑了能量守恒定律和剪切冲塞模型,提出了适用于刚性钝头弹体(平头、半球形头、球形)正贯穿中厚金属靶的挤凿块速度模型。设计了穿甲实验,以直径8 mm钨球正冲击3 mm厚GH4169靶板,得到了球形弹体相应的挤凿块数据,结合文献中平头和半球形头弹体实验数据验证了挤凿块速度模型的适用性,模型计算结果与实验数据一致性良好。提出的挤凿块速度模型可用于计算挤凿块对靶后目标的毁伤能力。  相似文献   

6.
运用有限元模型仿真弹丸侵彻靶板的全过程,通过计算得到大量数据,然后在弹丸穿透平板时极限速度和剩余速度经验公式的基础上,来探讨弹丸穿透单筋板时的极限速度和剩余速度的经验公式。  相似文献   

7.
利用轻气炮设备对平头、卵形弹进行了以5种角度撞击2 mm单层A3钢薄靶的斜穿甲试验,得到了不同头型弹体在各个角度撞击单层靶的初始-剩余速度曲线及靶板的弹道极限,获得并对比分析了弹体头部形状、撞击角度对靶板的防护性能及失效模式的影响。结果发现,平头弹在各个撞击角度下较卵形弹更容易击穿靶板,撞击角度较大时卵形弹较平头弹更容易发生跳飞现象;靶板的防护性能与弹体造成的靶板损伤和失效模式紧密相关,随着斜撞击角度变大,平头弹造成的靶板局部穿孔毁伤模式逐步由剪切冲塞失效转向以拉伸撕裂失效为主,同时整体结构弯曲和膜变形减小,而薄板在卵形弹斜撞击下的失效模式则以局部斜形非对称花瓣开裂为主。  相似文献   

8.
为研究异型头弹丸半侵彻金属靶的侵深特性,基于量纲方法对影响侵深的主控因素进行了分析,采用弹道枪加载和LS-DYNA软件对异型头弹丸半侵彻金属靶的作用过程进行了试验和数值模拟研究,分析了异型头弹丸结构、弹丸初速、靶板厚度等因素对侵彻深度的影响规律,获得了侵深随弹丸初速以及靶板厚度的变化曲线。研究结果表明,弹丸初速和靶板厚度是影响侵彻深度的关键因素,并拟合得到了弹丸初速和靶板厚度综合影响下的半侵彻侵深经验公式。研究结果可为半侵彻作用的研究及新型侵彻的工程计算方法等提供参考。  相似文献   

9.
为探讨结构形式对舰船舷侧复合装甲结构抗穿甲性能的影响,采用均质钢板前置和后置复合材料板分别模拟舰船舷侧外设和内设复合装甲结构,结合低速弹道冲击实验,分析和比较了两种结构形式组合靶板的穿甲破坏模式和抗弹吸能能力。在此基础上,得到了球头弹穿透后置组合靶板的剩余速度理论预测公式,并与试验结果进行了比较。结果表明,两种组合靶板中复合装甲板破坏模式的差异主要体现在迎弹面纤维剪切断裂的程度,而均质钢板则由于复合装甲板的影响,呈现出完全不同的破坏模式;后置组合靶板的抗弹吸能能力要大于前置组合靶板;将弹丸穿透后置组合靶板的剩余速度理论预测值与实验结果进行比较,两者吻合较好。  相似文献   

10.
为了解高强铝合金对动能杆的抗侵彻性能,在一级轻气炮上开展了直径5.98 mm的平头刚性弹侵彻6mm厚7A04-T6铝合金靶板的打靶试验,撞击速度范围为73.9~446.5 m/s。获得了弹体贯穿靶板后的剩余速度以及靶板的断裂行为,通过拟合初始-剩余速度数据得到了弹道极限。同时,在ABAQUS/Explicit中建立了三维有限元模型对打靶试验进行了数值计算,7A04-T6的力学行为通过Johnson-Cook本构模型和修正的Johnson-Cook断裂准则描述。试验结果表明,7A04-T6高强铝合金靶板在平头弹撞击下发生剪切冲塞,塞块表面有明显裂纹产生,弹道极限为156.0 m/s,剪切冲塞可在撞击速度不低于约0.90倍弹道极限时形成。数值仿真发现,有限元计算可成功再现靶板的剪切冲塞及冲塞表面的断裂;预报的弹道极限为168.8 m/s,比试验结果高约9%;撞击速度不低于0.92倍弹道极限时靶板发生剪切冲塞破坏,与试验结果十分接近。  相似文献   

11.
Q235钢单层板对平头刚性弹抗穿甲特性研究   总被引:1,自引:0,他引:1  
采用撞击实验和理论模型对单层金属板的抗侵彻性能进行了研究,分析了靶体厚度对抗侵彻性能的影响。通过对比撞击实验和理论模型计算结果,验证了理论模型和参数的有效性。结果表明,采用合适的理论模型能够有效地预测靶板在弹体撞击下的弹道极限。此外,分析了靶体在弹体撞击下的塑性变形总耗能,包括靶板局部变形和整体变形的耗能,同时考虑了靶体材料的应变率效应。在平头弹撞击厚靶的工况中,引入了一个修正函数对靶体厚度进行修正。  相似文献   

12.
The present paper examines the high-velocity impact behaviour of agglomerated cork-cored structures. The ballistic performance was studied by impact-perforation tests. Three different types of specimens were tested: an agglomerated cork, two spaced thin aluminium plates, and a pair of thin aluminium plates separated by an agglomerated-cork core. The behaviour of the agglomerated cork and the effects of the cork core were analysed in terms of the ballistic limit, residual velocity, and energy absorption. The ballistic limit of cork-cored structures increased slightly, whereas the absorbed energy was strongly augmented by the presence of the cork core.  相似文献   

13.
Multi-impact of projectiles on thin 304 stainless steel plates is investigated to assess the degradation of ballistic performance, and to characterise the inherent mechanisms. Assessment of ballistic degradation is by means of a double-impact of rigid spheres at the same site on a circular clamped plate. The limiting velocity of the second impact, will be altered by the velocity of the antecedent impact. Finite element analyses were used to elucidate experimental results and understand the underlying mechanisms that give rise to the performance degradation. The effect of strength and ductility on the single and multi-impact performance was also considered. The model captured the experimental results with excellent agreement. Moreover, the material parameters used within the model were exclusively obtained from published works with no fitting or calibration required. An attempt is made to quantify the elevation of the ballistic limit of thin plates by the dynamic mechanism of travelling hinges. Key conclusions: The multi-hit performance scales linearly with the single-hit performance; and strength is a significantly greater effector of increased ballistic limit than ductility, even at the expense of toughness.  相似文献   

14.
Two experimental investigations and a corresponding analytical study were conducted to examine the phenomena attendant to the impact of blunt-nosed, hard-steel strikers on stationary thin plates of aluminum and steel at moderate angles of yaw and zero obliquity. The variation of ballistic limit with yaw angle or the terminal velocity and final trajectory angle in perforation tests were ascertained. Post-mortem examination of the plates indicated that damage and failure occurred by bulging, lateral indentation, and side and front petaling. A theoretical model based on a membrane representation was developed that analyzed the impact by dividing the process into five stages. This model underpredicted the ballistic limit by up to 14%, with better correlation found at higher yaw angles. Excellent agreement was observed between the experimental and analytical final velocities when the data points were corrected to reflect the difference between the experimental values of the ballistic limit and that predicted by the model. Fair agreement was found between the experimental and the analytical values of the trajectory angle.  相似文献   

15.
This paper concerns energy absorption in thin (0.4 mm) steel plates during perforation by spherical projectiles of hardened steel, at impact velocities between 200 and 600 m s−1. Absorbed energies have been obtained from measured incident and emergent projectile velocities. These tests were simulated using ABAQUS/Explicit, using the Johnson and Cook plasticity model. A strain rate-dependent, critical plastic strain fracture criterion was employed to model fracture. Good agreement is obtained between simulations and experiment and the model successfully captures the transitions in failure mode as projectile velocity increases. At velocities close to the ballistic limit, the plates fail by dishing and discing. As the incident velocity is increased, there are two transitions in failure mode, firstly to shear plugging and secondly to fragmentation and petalling. The simulations also show that, during the latter mode of failure, the kinetic energy of ejected debris is significant, and failure to include this contribution in the energy balance leads to a substantial over-estimate of the energy absorbed within the sheet. Information is also presented relating to the strain rates at which plastic deformation occurs within the sample under different conditions. These range up to about 105 s−1, with the corresponding strain rate hardening effect being quite substantial (factor of 2–3 increase in stress).  相似文献   

16.
This paper concerns energy absorption during projectile penetration of thin, lightweight sandwich panels with metallic fibre cores. The panels were made entirely of austenitic stainless steel (grade 304). The faceplates were 0.4 mm thick and the core (∼1–2 mm thick) was a random assembly of metallic fibres, consolidated by solid state sintering. The impact tests were simulated using ABAQUS. Faceplate behaviour was modelled using the Johnson and Cook plasticity relation and a strain rate-dependent, critical plastic strain failure criterion. The core was modelled as an anisotropic, compressible continuum, with failure based on a quadratic, shear stress-based criterion. The experimental data show that, with increasing impact velocity, the absorbed energy decreased from the ballistic limit, reached a minimum value, and then underwent a monotonic increase. The FEM modelling demonstrates that this increase arises from the kinetic energy of ejected fragments, while the energy absorbed by plastic deformation and fracture tends to a plateau. Normalised absorbed energies have been compared to values for single faceplates. The sandwich panels are marginally superior to single plates on an areal density basis.  相似文献   

17.
Critical response of shielded plates subjected to hypervelocity impact   总被引:2,自引:0,他引:2  
A ballistic limit equation for hypervelocity impact on thin plates is derived analytically. This equation applies to cases of impulsive impact on a plate that is protected by a multi-shock shield, and is valid in the range of velocity above 6 km/s. Experimental tests were conducted at the NASA Johnson Space Center on square aluminum plates. Comparing the center deflections of these plates with the theoritical deflections of a rigid-plastic plate subjected to a blast load, one determines the dynamic yield strength of the plate material. The analysis is based on a theory for the expansion of the fragmented projectile and on a simple failure criterion. Curves are presented for the critical projectile radius verus the projectile velocity, and for the critical plate thickness versus the velocity. These curves are in good agreement with curves that have been generated empirically.  相似文献   

18.
In this paper, the ballistic performance of single, two-, three- and four-layered steel plates impacted by ogival-nosed projectiles were experimentally investigated. Thin multi-layered plates arranged in various combinations of the same total thicknesses were normally impacted with the help of a gas gun. Ballistic limit velocity for each configuration target was obtained and compared based on the investigation of the effect of the air gap between layers, the number, order and thickness of layers on the ballistic resistance of targets. The results show that the thin monolithic targets have greater ballistic limit velocities than multi-layered targets if the total thickness less than a special value, and also the ballistic limit velocities of multi-layered targets decrease with the increase of the number of layers. Otherwise, the moderate thickness monolithic targets give lower ballistic limit velocities than multi-layered targets. Furthermore, the ballistic limit velocities of in-contact multi-layered targets are greater than those of spaced multi-layered targets. The order of layers affects the ballistic limit velocities of multi-layered targets, the ballistic resistance of the multi-layered targets is better when the first layer is thinner than the second layer.  相似文献   

19.
A new ballistic limit equation has been developed for the case of a Whipple shield configuration or a sandwich panel with honeycomb core placed in front of a backwall. This “triple plate” ballistic limit equation considers explicitly the thicknesses, materials and spacings of each of the three plates. The third plate, i.e., the backwall, represents the cover plate or external wall of the equipment that is placed behind the satellite structure wall. The ballistic limit equation has been calibrated with experimental results obtained from hypervelocity impact tests on satellite equipment that was placed behind typical satellite structure walls. The equipment considered were fuel and heat pipes, pressure vessels, electronic boxes, harness, and batteries, all representative of real satellite equipment. The new equation was applied to prove that if the inherent protection capability of satellite equipment against hypervelocity impacts is explicitly considered in a ballistic limit equation, the critical projectile diameters for failure of such equipment are raised considerably compared to the case where equipment is assumed to fail as soon as the structure wall that protects it is perforated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号