首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Aiming at actual condition of poor effect of hole sealing for the reason of poor cement paste fluidity in the process of coal mine gas drainage, by adding a water reducing agent, cement paste for hole sealing was produced. The changes of initial distribution, weighted average values and total relaxation signal intensity of transverse relaxation time (T2) of water in pure cement paste and water reducing agent added cement paste were studied with low field proton nuclear magnetic resonance (NMR). The results show that there are four peaks in T2 distribution curves of cement paste: the first peak is related to the bound water in flocculation, the second and the third peaks are related to the water in flocculation, water reducing agent makes it extending towards the long relaxation time, increasing its liquidity, and the fourth peak is related to the free water. By using weighted average values of T2 and total relaxation signal intensity, hydration process of cement pastes could be roughly divided into four stages: the initial period, reaction period, accelerated period and steady period. By analyzing the periods, it makes sure that the grouting process should be completed in the reaction period in the site, and the drainage process should be started in the steady period. The results have great guiding significance to the hole sealing and methane drainage.  相似文献   

2.
Under saturation dosage of all kinds of SP, the free water amount was examined by centrifuge. The distribution of solution and flocculation microstructures in fresh cement paste was observed in three- dimensional space by confocal laser scanning microscope(CLSM). Results indicate that SP can increase the free water amount by destroying the flocculated cement particle structure and different free water amount is released by different kinds of SP. The changes of the size of flocculation structures and the dispersion of solution were obviously detected with confocal laser scanning microscope: the size of flocculation structures was smaller and more dispersed in fresh cement paste with polycarboxylate superplasticizer, but the size of flocculation structures was bigger and cannot be dispersed uniformly in fresh cement paste with others SP. The multi- level flocculation structures theoretical model of fresh cement paste was then set up. The theory indicates that different kinds of SP with different dispersion strength will open the flocculation structures at different levels, which in turn present different water reducing rate.  相似文献   

3.
The excess water film theory and the properties of flocs are integrated to examine the effect of the polycarboxylate-type superplasticizer on the paste fluidity.The theory states that excess water can surround the flocs rather than the particles and that the cell consists of a floc and a superficial water film.Experiments on limestone powder pastes were conducted to verify the theory.The superplasticizer dosage(sp%)and the water–powder ratio by volume(Vw/Vp)were systematically varied.A sedimentation balance method was used to measure the size distribution of the flocs in the limestone powder pastes.The water film thickness(WFT)of flocs was then calculated and shown to determine the paste fluidity.Based on this WFT of flocs,the effect of the sp on the paste fluidity was determined and then compared with the effect of water.  相似文献   

4.
The rheologicalbehaviors of fresh cement paste with polycarboxylate superplasticizer were systematically investigated.Influentialfactors including superplasticizer to cement ratio(Sp/C),water to cement ratio(w/c),temperature,and time were discussed.Fresh cement pastes with Sp/Cs in the range of 0 to 2.0% and varied W/Cs from 0.25 to 0.5 were prepared and tested at 0,20 and 40 °C,respectively.Flowability and rheologicaltests on cement pastes were conducted to characterize the development of the rheologicalbehavior of fresh cement pastes over time.The exprimentalresults indicate that the initialflowability and flowability retention over shelf time increase with the growth in superplasticizer dosage due to the plasticizing effect and retardation effect of superplasticizer.Higher temperature usually leads to a sharper drop in initialflowability and flowability retention.However,for the cement paste with high Sp/C or w/c,the flowability is slightly affected by temperature.Yield stress and plastic viscosity show similar variation trends to the flowability under the abovementioned influentialfactors at low Sp/C.In the case of high Sp/C,yield stress and plastic viscosity start to decline over shelf time and the decreasing rate descends at elevated temperature.Moreover,two equations to roughly predict yield stress and plastic viscosity of the fresh cement pastes incorporating Sp/C,w/c,temperature and time are developed on the basis of the existing models,in which experimentalconstants can be extracted from a database created by the rheologicaltest results.  相似文献   

5.
The initial hydration of steel slag with high Al2O3 content and its influence on the initial hydration of cement were investigated in this study. Steel slag with high Al2O3 content may contain much calcium aluminate mineral but very little gypsum. The steel slag hydrates much more quickly than cement in the initial hydration period, producing many flake products which have a great influence on the fluidity, initial setting time, and adsorption level of superplasticizer of paste. Replacing part of cement by steel slag with high Al2O3 content can change the hydration condition of calcium aluminate mineral of the cement by decreasing the gypsum to calcium aluminate mineral ratio, resulting in accelerating the hydration rate of calcium aluminate mineral in the initial hydration period. Paste containing steel slag with high Al2O3 content has a shorter initial setting time, higher adsorption level of superplasticizer, and greater loss in fluidity than the pure cement paste.  相似文献   

6.
The adsorption amount, ζ-potential of cement particles and fluidity of cement paste were tested to research the competitive adsorption between naphthalene superplasticizer(FDN) and STPP. The experimental results showed that the presence of STPP could significantly improve the fluidity of cement paste and reduce the fluidity loss with FDN. There existed a competitive adsorption between STPP and FDN. STPP and calcium ions formed complexes; they preferentially adsorbed onto surface of cement particles and preempt adsorption points of FDN; and it reduced adsorption amount of FDN. In the absence of STPP, saturation adsorption amount of FDN was 5.93 mg/g; but when the dosage of STPP was 0.1%, it reduced to 4.3 mg/g(about 72.5%). The adsorption amount of FDN was reduced by STPP, but ζ-potential of cement particles enhanced and fluidity of cement paste increased because of strong negative charge effect of the complexes. Adsorption of the complexes would delay Ca2+ into liquid and inhibit formation of active adsorption points. Then, content of FDN in liquid increased with the addition of STPP and ζ-potential of cement particles became stable. In this way, fluidity loss of cement paste reduced.  相似文献   

7.
Three different curing temperatures(20 ℃, 40 ℃, and 60 ℃) were set, so that the nonevaporable water(w_n) contents of plain cement pastes cured at these three temperatures were measured to determine the hydration degree of cement. Tests were carried out to compare the pore structure and strength of cement paste, as well as the strength and permeability of concrete under different temperature curing conditions when their cements were cured to the same hydration degree. The experimental results show that either at a relatively low hydration degree(w_n=15%) or high hydration degree(w_n=16.5%), elevated curing temperature has little influence on the hydration products of cement paste, while it has a negative influence on the pore structure and compressive strength of cement paste. However, this negative effect is weaker at high hydration degree. The large capillary pore(100 nm) volumes of cement pastes remain almost the same at high hydration degree, regardless of curing temperatures. As for the concrete, elevated curing temperature also has negative influence on its compressive strength development, at both low hydration degree and high hydration degree. And this negative effect is stronger than that on cement paste's compressive strength at the same hydration degree. On the whole, elevated curing temperature has little influence on the resistance of concrete to chloride ion penetration.  相似文献   

8.
Circulating fluidized bed combustion (CFBC) ash exhibits the desirable pozzolanic activity which makes it a potential supplementary cementitious material to replace cement for concrete production. However, the high unburnt carbon content and porous surface structure of CFBC ash may adsorb water reducer and thereby significantly reduce the efficiency of water-reducing agents. The adsorption mechanism of polycarboxylate superplasticizer in CFBC ash-Portland cement paste was investigated by ultraviolet-visible spectrophotometer, and the conception of "invalid adsorption site" of CFBC ash was presented. The results show that the adsorption behavior of polycarboxylate superplasticizer in coal ash-Portland cement paste can be described by Langmuir isothermal adsorption equation. The adsorption capacity of CFBC ash-Portland cement paste is higher than that of pulverized coal combustion (PCC) fly ash-Portland cement paste. Moreover, the adsorption amount of polycarboxylate superplasticizer increases with the ratio of ash-to-cement in the paste. At last, the fluidity of CFBC ash-Portland cement paste is lower than that of the PCC fly ash paste. This work suggests that when CFBC ash is used as concrete admixture, the poor flowability of the cementitious system due to the high adsorption of water and water-reducing agent should be taken into consideration.  相似文献   

9.
一种高精准水泥浆体流动性测定装置   总被引:1,自引:1,他引:0  
针对传统净浆流动度测试方法灵敏度不高、测试范围窄的问题,设计了一系列不同口径的玻璃管(H管)。通过对不同水灰比、不同掺量减水剂条件下水泥浆体的流变特点的对比分析,得到不同H管对应净浆流动度测试范围和减水剂最佳掺量测试方法。H管不仅灵敏度高、测试范围广,而且还可以反映浆体粘度,是一套比较全面准确的水泥浆体流动性测试方法。  相似文献   

10.
以甲基丙烯酸、聚乙二醇1000、对甲苯磺酸、对苯二酚、过硫酸铵和甲基丙烯磺酸钠为原料,采用两步法合成出新型聚羧酸系高效减水剂(简称PC)。将合成的PC与目前广泛使用的萘系高效减水剂(简称FDN)相比,具有更加优异的性能,具体表现为:在掺量很少情况下,水泥净浆就具有较高的流动度;当掺量相同时,其对水泥净浆流动度远超FDN。此外,它与水泥的相容性好,具有缓凝及明显抑制水泥净浆流动度经时损失性能,对混凝土也能表现出显著的减水增强性,是一种性能优良,适合于配制高强、超高强混凝土的高效减水剂。  相似文献   

11.
单体类型对多羧酸型高效减水剂性能的影响   总被引:4,自引:0,他引:4  
用于合成多羧酸共聚物的单体结构和官能团不同,对于减水与保塑性能的影响不同;选择含不同官能团的多种单体,合成一系列多羧酸型高效减水保塑剂;通过水泥净浆试验、混凝土试验测定了减水率和保塑性能;讨论了不同单体对减水剂性能的影响,并对分子结构进行了红外光谱表征。结果表明:在分子链中引入马来酸酐对保塑性能作用明显,引入适当用量和聚合度的聚乙二醇可同时提高减水率与保塑性。  相似文献   

12.
A macromer, methoxypolyethylene glycol acrylate (MPEGAA), was synthesized by direct esterification using methoxypolyethylene glycol (MPEG-1200) and acrylic acid (AA) as the main materials. MPEGAA was then used to prepare a polyacrylic acid superplasticizer modified with 2-acrylamido-2- methylpropane sulfonic acid (AMPS). A single-factor test was performed to investigate the effects of the molar ratio of acid to alcohol (n(AA)/n(MPEG)), inhibitor amount, catalyst amount, temperature, and time of esterification on the synthesis of MPEGAA. The experimental results showed that the optimal esterification conditions were as follows: n(AA)/n(MPEG), 3.5:1; amount of hydroquinone (as an inhibitor), 1.2%; amount of para-toluenesulfonic acid (as a catalyst), 5.5%; reaction temperature, 95 ~C; and reaction time, 6 h. The AMPS- modified polyacrylic acid superplasticizer prepared under the optimal esterification conditions enabled the achievement and maintenance of high cement dispersibility. At an admixture amount of 0.15%, the cement paste fluidity was initially as high as 300 mm, and then decreased to 315 mm after 1 h and to 290 mm after 2 h.  相似文献   

13.
Using water separation technique,acrylic acid (AA) and polyethylene glycol (PEG) 1000,of which the ratio was 1.5,were esterified and the optimum esterification ratio of 90% could be reached under the condition of 110 ℃×3 h.Using polyoxyethylene acrylate macromonomer (PA) prepared in the esterification,AA and sodium methylacryl sulfonate (MAS) as monomers,a copolymer which could be used as superplasticizer was prepared by free radical coolymerization in n(PA):n(AA):n(MAS) of 1:7:3.When the synthesis condition was 80 ℃× 5 h,the optimal dosage of initiator was 3.0%-4.0%,the fluidity of cement paste with the samples could reach 270 mm.By analyzing the effect of the content of residual small molecule sulfonic monomer on the properties of sample,n(MAS)/n(PA) was controlled in a range of 2.5-3.8.  相似文献   

14.
通过对普通硅酸盐水泥、矿渣硅酸盐水泥与GK-3000、HJ-12、萘系FDN三种高效减水剂的适应性进行试验研究,在不同品种水泥中掺入不同品种不同用量的高效减水剂,测其减水率及3 min、30 min和60 min后的流动度、坍落度值,得出普通硅酸盐水泥与萘系FDN高效减水剂间适应性良好的结论,并测得该减水剂的平均减水率为19.8%。  相似文献   

15.
Formation, solution and phase change of hydration products in MgO-MgCl2-H2O system was studied with thermodynamics method, and resistance to water immersion and phase change of magnesium oxychloride cement with different MgO/MgCl2 molar ratio was experimented. The results show that pH value of immersion solution of cement paste has a remarkable influence on phase stability of hydration products. A higher pH value leads to a lower solubility and a better phase stability of hydration products. When the solution pH value is higher than 10.37, the precipitation of much Mg(OH)2 crystal induces a worse phase stability of hydration products. With the increasing MgO/MgCl2 molar ratio (lower than 6), the more amount of MgO in the hydration products enhances the alkalinity of solution and the phase stability is improved. However, when the MgO/MgCl2 molar ratio is higher than 6 and the excessive MgO exsits in the hydration products, the cement paste may be damaged by the excessive crystallization stress of a great deal of Mg(OH)2 formation. Funded by the National Natural Science Foundation of China(No. 50078019)  相似文献   

16.
影响混凝土外加剂与水泥相容性问题的因素很多,混和材的种类和掺量是其中之一。以减水剂为例,其在水泥混凝土应用中存在饱和点,通过饱和点的变化可判定水泥与减水剂的相容性好坏,采用不同混和材掺量、不同高效减水剂掺量的水泥净浆试验,进行5 min、30 min、60 min的净浆流动度的测试及饱和点的确定,结果表明,加入混合材后改善了水泥与高效减水剂之间的相容性,少量粉煤灰可以提高浆体的初始流动度,改善流动度经时损失。  相似文献   

17.
研究了高效减水剂与胶凝材料共粉磨时间高效减水剂对物料分散性和物料物磨效率的影响,以及共粉磨法与同掺法对高效减水剂减水效果的影响,结果表明,高效减水剂的存在有助于改善粉磨物料分散性,并可提高粉磨效率。与同掺法相比,采用共粉磨法可提高高效减水剂的减水效果,且水泥净浆稠度经过变化小,从而表明,用共粉磨改性超细水泥配制高性能砼时,用水量相同情况下,其初始坍 落度较同掺法时大,而坍 落度损失较小。  相似文献   

18.
聚合物-水泥基注浆材料早期流变及水化特性   总被引:1,自引:0,他引:1  
为制备满足复杂地层加固工程需求的高性能水泥基注浆材料,探究以偏铝酸钠(SA)、聚羧酸(Sp)及高吸水性树脂(SAP)为组分的聚合物体系及其掺量对新拌水泥浆体流变特性与泌水率的影响,并采用水化放热监测与倒置荧光显微技术,对不同体系下水泥浆体早期水化进程及微米级颗粒的悬浮分散形态进行分析.结果表明:新拌水泥浆液流动性和泌水率与SA、SAP掺量呈负相关,随Sp掺量增加而提高. Sp及SAP延缓了水泥早期水化进程,改性样延迟近1 h进入水化诱导期,诱导期内水化放热速率显著降低.在不同掺量SA的促凝效应、Sp的分散效应以及SAP的"水库"作用下,新拌水泥浆液表现为初始及经时流动度大于200 mm的高流态期可分别被控制在10、20、30 min内且析水率小于5%(稳定性浆液),接近临界期时流动度陡降、流变参数突增并迅速凝结的流变特性.结合微观结构观测结果,建立了新拌水泥浆体流变演化模型,揭示多聚合物协调效应下水泥浆体呈现分散-储水-流变-水化的早期流变机制.  相似文献   

19.
The hydration characteristics and expansion impetus of three kinds of cement paste under free-and confined-curing conditions were investigated, which were respectively mixed with three different kinds of expansive agent at low W/B ratio. The results show that the hydration products of pure cement paste and paste mixed with expansive agent are same, but the amount of hydration products, un-hydrated C3S and C2S are obviously different at the same hydration age. At 3 d age, the amount of CH in pure cement paste is less than that of paste mixed with expansive agent, but it is reverse when at 28 d age. The amount of AFt at 3d and 28d age in pure cement paste is less than those of paste mixed with expansive agent. Regardless of under free- or confined-curing condition, the amount of ettringite produced varies little since 3d age. The joint effect of the tumefaction of gel-ettringite due to water absorption and the expansive pressure on the pore caused by the crystalloid ettringite is the cause of the volume expansion of cement paste, and the former effect is much greater than the latter. LU Lin-nu : Born in 1972 Funded by 973 High-tech Project of China (No. 2001CB610704-2) and the Natural Science Foundation of Hubei Province(No. 2002AB075)  相似文献   

20.
The compressive strength of the cement-silica fume blends with 5mass%, 10mass%, 20mass% and 30mass% of silica fume and water to binder ratio of 0.28, 0.32 and 0.36 from three days to ninety days were investigated. The reaction degree of silica fume was calculated from the Q4 silica tetrahedron, which was used as a probe obtained from 29 Si solid state nuclear magnetic resonance analysis. The fl at of compressive strength after 28 days disappeared for blended cement with inereasing reaction degree of silica fume. The compressive strength of the blended cement pastes approached that of P.I. cement pastes after 56 days and exceeded that after 90 days. The addition of silica fume and the w/b ratio of blends are both critical to the reaction degree of silica fume. The appropriate addition of silica fume, high silica fume reaction degree and low w/b ratio are benefi cial to the compressive strength of the cement-silica fume blends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号