首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Magnetically separable mesoporous activated carbon was prepared from brown coal in the presence of Fe_3O_4 as a bi-functional additive. Magnetic activated carbon(MAC) was characterized by lowtemperature nitrogen adsorption, scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and vibrating sample magnetometry(VSM). The evolution behaviors and transition mechanism of Fe_3O_4 during the preparation of MAC were investigated. The results show that prepared MAC with 6 wt% Fe_3O_4 addition having a specific surface area and mesopore ratio of 370 m~2·g~(-1) and 55.7%, which meet the requirements of adsorption application and magnetic recovery. Highly dispersed iron-containing aggregates with the size of 0.1 lm in the MAC were observed. During the preparation of MAC, Fe_3O_4 could enhance the escape of volatiles during the carbonization. Fe_3O_4 could also accelerate burning off the carbon wall during activation, which leads to enlarging micropore size, then resulting in the generation of mesopore and macropore. As a result, a part of Fe_3O_4 converted into FeO, FeOOH, a-Fe, c-Fe, Fe_2 SiO_4 and compound of Aluminum-iron-silicon.The prepared activated carbon, which was magnetized by both of residual Fe_3O_4, reduced a-Fe and cFe, can be easily separated from the original solution by external magnetic field.  相似文献   

2.
The magnetically separable ternary polyetherimide/titanate@Fe3O4 (PTF) photocatalysts of special heterostructure between magnetite (Fe3O4) microspheres and titanates nanosheets modified by polyetherimide (PEI) were successfully fabricated via a simple facile hydrothermal deposition method. The as-prepared photocatalysts were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, Transmission electron microscopy and UV-vis diffuse reflectance spectroscopy etc. The results showed that the as-fabricated material had a structure of Fe3O4 microspheres coated with titanates nanosheets modified by PEI. The special interfacial contact between 3D microsphere and 2D nanosheets in the nanoarchitectures was formed via electrostatic attraction. Furthermore, the resulted photocatalysts were tested by degradation reaction of methylene blue under visible light irradiation and demonstrated an enhanced performance than the pure Fe3O4 microspheres, and the photocatalytic activity enhanced with the molar ratio of Fe3O4 microspheres and modified titanate gradually, which was attributed to the expansion of the surface area and the different electrostatic contact between the Fe3O4 microspheres and titanate nanosheets. Moreover, the obtained results revealed the high yield magnetic separation and efficient reusability of PTF-5 (96.7%) over 3 times reuse.  相似文献   

3.
Single-crystal Fe3O4 with monodisperse microspheres structure has been used for individual electrochemical detection of heavy metal ions. Morphology and structure of the as-prepared Fe3O4 microspheres were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Meanwhile the electrochemical properties of the Fe3O4 microspheres modified glass carbon electrodes (GCE) were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), and the enhanced electrochemical response in stripping voltammetry for individual detection of Pb(II), Hg(II), Cu(II), and Cd(II) was evaluated using square wave anodic stripping voltammetry (SWASV). With high specific surface area and excellent catalytic activity toward heavy metal ions, the as-prepared monodisperse and single-crystal Fe3O4 microspheres show a preferable sensing sensitivity (22.2 μA/μM) and limit of detection (0.0699 μM) toward Pb(II). Furthermore, the electrochemical sensor of Fe3O4 microspheres exhibits excellent stability and it also offers potential practical applicability for the determination of heavy metal ions in real water samples. This study provides a potential simple and low cost iron oxide for the construction of sensitive electrochemical sensors applied to monitor and control the pollution of toxic metal ions.  相似文献   

4.
The system of SiO2-CaO-P2O5 bioactive glasses (BG) were successfully synthesized by microemulsion approach. X-ray diffraction (XRD),scanning electron micro scopy(SEM) and energy dispersive X-ray (EDX) analyses, transmission electron microscopy(TEM),Fourier transform infrared spectroscopy (FTIR), BET N2 gas adsorption analysis techniques were utilized in order to evaluate the phase composition, dimension, morphology, interconnectivity of pores and particle size of the synthesized BG respectiveely. The biocompatibility of BG was assessed by using dimethylthiazol diphenyl tetrazolium bromide (MTT).The BG scaffolds were implanted in rabbit mandibles and studied histologically. The results showed that the BG with a particle size less than 100 nm was prepared successfully. The measured BET specific surface area and pore volume was 113.9 m2/g and 0.28 cm3/g respectively. Cell cultures revealed that BG has been shown to have good biocompatibility and is also beneficial to the survival of Schwann cells, which can promote cell proliferation in vivo assay indicating that the BG can promote osteoconductivity.  相似文献   

5.
The semi-terminated silica nanotubes with 80–100 nm porous diameter were prepared with Al/Al2O3 (AAO) template by the sol-gel method, and then were functionalized by 3-aminopropyltriethoxysilane (APTES). The functionalized silica nanotubes were characterized by transmission electron microscope (TEM), fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (1H-NMR and 29Si-NMR). The results indicated that APTES was successfully functionalized onto the internal surface and the mouth of the silica nanotubes. It would provide the material base for silica nanotubes corking and delivery drug.  相似文献   

6.
Magnetic nanoparticles (Fe304) were prepared by chemical precipitation method using Fe^2+ and Fe^3+ salts with sodium hydroxide in the nitrogen atmosphere. Fe3O4 nanoparticles were coated with human serum albumin(HSA) for magnetic resonance imaging as contrast agent. Characteristics of magnetic particles coated or uncoated were carried out using scanning electron microscopy and X-ray diffraction. Zeta potentials, package effects and distributions of colloid particles were measured to confirm the attachment of HSA on magnetic particles. Effects of Fe3O4 nanoparticles coated with HSA on magnetic resonance imaging were investigated with rats. The experimental results show that the adsorption of HSA on magnetic particles is very favorable to dispersing of magnetic Fe3O4 particles, while the sizes of Fe3O4 particles coated are related to the molar ratio of Fe3O4 to HSA. The diameters of the majority of particles coated are less than 100 nm. Fe3O4 nanoparticle coated with HSA has a good biocompatibility and low toxicity. This new contrast agent has some effects on the nuclear magnetic resonance imaging of liver and the lowest dosage is 20μmol/kg for the demands of diagnosis.  相似文献   

7.
Slag glass melting is usually performed on a laboratory scale in crucibles, which are economically viable tools for the production of slag glass-ceramics. In this work, quaternary CaO-Al2O3-MgOSiO2 (CAMS) glass-ceramics were prepared by melting the tailing of Bayan Obo mine tailing, blast furnace slag, and fly ash in alumina and graphite crucibles. The effect of the crucible material on the microstructure and properties of the glass-ceramics was investigated using differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and inductively coupled plasma atomic emission spectroscopy. Results indicated that the contents of Al2O3 and Fe2O3 in the initial glass were significantly changed by the corrosion of the alumina crucibles during the glass melting process and by the reducing action of the graphite crucibles. The main crystal phases of glass-ceramics melted in alumina crucibles and graphite crucibles were Ca (Mg, Fe, Al) (Si, Al)2O6, coesite and Ca (Mg, Al) (Si, Al)2O6, respectively. According to these findings, we conclude that the microstructure and properties of the glass-ceramics are affected by the crucibles.  相似文献   

8.
A novel method of pellet calcification roasting-H_2 SO_4 leaching was proposed to efficiently separate and extract vanadium(V) from vanadium-titanium(V-Ti) magnetite concentrates.The leaching rate of V is as high as 88.98%,while the leaching rate of impurity iron is only 1.79%.Moreover,the leached pellets can be used as raw materials for blast furnace ironmaking after secondary roasting.X-ray photoelectron spectroscopy(XPS) and scanning electron microscopy with energy dispersive X-ray spectrometry(SEMEDS) analyses showed that V~(3+) was oxidized to V~(5+) after roasting at 1200℃,and V~(5+) was then leached by H_2 SO_4.X-ray diffraction(XRD) analyses and single factor experiment revealed a minimal amount of dissolved Fe_2 O_3 during H_2 SO_4 leaching.Therefore,a high separation degree of V and iron(Fe) from V-Ti magnetite concentrate was achieved through H_2 SO_4 leaching.Compared with the traditional roastingleaching process,this process can achieve a high selectivity of V and Fe,and has excellent prospects for industrial production.  相似文献   

9.
Fe3O4/carbon nanotubes (Fe3O4/CNTs) nanocomposites were prepared by polylol high-temperature decomposition of the precursor ferric chloride and CNTs in liquid triethylene glycol. After surface modification with hexanediamine, folate was covalently linked to the amine group of magnetic Fe3O4/CNTs nanocomposites. The products were characterized by Fourier-transform infrared spectroscopy, transmission electron microscopy, and vibrating sample magnetometry. Then Fe3O4/CNTs were used as a dual-drug carrier to co-delivery of the hydrophilic drug epirubicin hydrochloride and hydrophobic drug paclitaxel. The results indicated that the Fe3O4/CNTs had a favorable release property for epirubicin and paclitaxel, and thus had potential application in tumor-targeted combination chemotherapy.  相似文献   

10.
Cerium-substituted yttrium iron garnet( CexY3-xFe5O12, Ce : YIG ) was prepared via coprecipitation. The structure, morphology, valence state and constituent of Ce ions were investigated respectively. X-ray powder diffraction( XRD ) analysis shows that Ce : YIG was of single cubic YIG phase. The result of X-ray photoelectron spectroscopy( XPS ) indicates the Ce ions in Ce : YIG were in the state of trivalence. Scanning electron microscope ( SEM ) demonstrates the conglobatian of Ce : YIG particles about 0.2μm scale. The magnetic properties were studied by a vibrating sample magnetometer (VSM) and the result exhibits that substitution of Ce 3 changes the magnetic parameters of YIG. The effects of doping content of Ce ions and synthesis temperature on valence control were discussed in detail.  相似文献   

11.
Ce-doped Bi2O3 nanopowders were prepared by reverse titration chemical coprecipitation from Bi3+ and Ce4+ containing aqueous solution. Techniques of X-ray diffraction (XRD), transmission electron microscopic (TEM) and Fourier transform infrared spectroscopy (FTIR) were employed to characterize the as-synthesized materials. The XRD patterns indicated that the peaks can be easily indexed to β-Bi2O3 and no diffraction peaks of Ce or other impurity phases were detected in the prepared samples. The calculated average crystalline size decreased from 31.72 to 11.96 nm when the Ce content increased from 1 wt% to 10 wt%. The morphology changed from flake-like into the spherical-like with increase in Ce content. The electric conductivity of Ce-doped Bi2O3 electrolyte was also investigated by two probe DC method. Conductivity analysis exhibited that the rate of conductivity increased with increasing Ce2+ ratio, when the Ce concentration was up to 5 wt%, the as-synthesized Ce-doped Bi2O3 electrolyte showed the maximum value of conductivity(0.295 S·cm–1).  相似文献   

12.
Novel Bi2S3/BiOCl photocatalysts were successfully synthesized via a facile biomolecule-assisted solvothermal method and biomolecule L-cysteine was used as the sulfur source. The structures, morphology, and optical properties of the synthesized samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectroscopy (DRS). The presence of Bi2S3 in the Bi2S3/BiOCl composites could not only improve the optical properties but also enhance the photocatalytic activities for the degradation of Rhodamine B (RhB) under visible-light irradiation (λ > 420 nm) as compared with single Bi2S3 and BiOCl. Especially, the sample displayed the best performance of the photodegradation when the feed molar ratio of BiCl3 and L-cysteine was 2.4:1, which was about 10 times greater than that of pure BiOCl. The enhanced photocatalytic activities could be ascribed to the effective separation of photoinduced electrons and holes and the photosensitization of dye. Moreover, the possible photodegradation mechanism was also proposed, and the results revealed that the active holes (h+) and superoxide radicals (?O2 ?) were the main reactive species during photocatalytic degradation.  相似文献   

13.
Ni-Co-Fe2O3 composite coatings were electrodeposited using cetyltrimethylammonium bromide (CTAB)-modified Watt’s nickel bath with Fe2O3 particles dispersed in it. The effects of the plating parameters on the chemical composition, structural and morphological characteristics of the electrodeposited Ni-Co-Fe2O3 composite coatings were investigated by energy dispersive X-ray (EDS) spectroscopy, X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results reveal that Fe2O3 particles can be codeposited in the Ni-Co matrix. The codeposition of Fe2O3 particles with Ni-Co is favoured at high Fe2O3 particle concentration and medium stirring, and the deposition of Co is favoured at high concentration of CTAB. Moreover, the study of the textural perfection of the deposits reveals that the presence of particles leads to the worsening of the quality of the observed 〈220〉 preferred orientation. Composites with high concentration of embedded particles exhibit a preferred crystal orientation of 〈111〉. The more the embedded Fe2O3 particles in the metallic matrix, the smaller the sizes of the crystallite for the composite deposits.  相似文献   

14.
TiO2 photocatalysts loaded with V2O5 were prepared via a modified hydrolysis process, and characterized by X-ray diffraction, transmission electron microscopy, Raman spectra and diffuse reflectance UV-Vis spectra measurements. The photocatalytic activity of V2O5/TiO2 was investigated by employing splitting of water for O2 evolution. The results indicate that V2O5 loading can pronouncedly improve the photocatalytic activity of TiO2 with Fe3+ as an electron acceptor under UV or visible light irradiation. The optimum mass fraction of the loaded V2O5 is 8%, and the largest speed of O2 evolution for 8%V2O5 (mass fraction) loaded TiO2 catalyst is 118.2 μmol/(L·h) under UV irradiation, and 83.7 μmol/(L·h) under visible light irradiation.  相似文献   

15.
Nanocomposites MgFe2O4/SiO2 were successfully synthesized by the sol-gel method in the presence of N, N-dimethylformamide (DMF). The formation of pure MgFe2O4 was confirmed by powder X-ray diffraction (XRD) and electron diffraction. The structural evolution of MgFe2O4 nanocrystals was followed by powder X-ray diffraction and IR absorption spectroscopy. The formation of spinel structure of MgFe2O4 started at 800 °C, and completed at 900 °C. The transmission electron microscopy (TEM) measurements suggest that the particle sizes increase with the increasing annealing temperature, and the mean particle sizes of the spherical samples annealed at 800 °C, 900 °C and 1 050 °C are ca. 3 nm, 8 nm and 11 nm, respectively. Magnetization measurements at room temperature and 78 K indicate superparamagnetic nature of these MgFe2O4 nanocrystals. Funded by the National Natural Science Foundation of China(No. 30771676), the Natural Science Foundation of Jiangsu Province (No. BK20081842), and the Foundation of Nanjing Bureau of Personal for the Returned Overseas Chinese Excellent Scholars  相似文献   

16.
为在可见光LEDs(visible light LEDs,vis-LEDs)辐照下实现邻苯二甲酸二甲酯(Dimethyl phthalate,DMP)的有效去除,通过向电解液中加入尿素的一步阳极氧化法在钛网表面制备N-TiO_2/Ti网状光催化剂,并将N-TiO_2/Ti网以多层叠加的方式布置于反应器内对DMP进行降解.采用场发射扫描电子显微镜、能量色散X射线光谱、X射线衍射光谱、X射线光电子能谱以及紫外-可见漫反射吸收光谱等分析方法对N-TiO_2/Ti网进行表征.结果显示:N元素主要以取代氮形态参与到晶格构成中,且未引起TiO_2纳米管的表面形貌和晶型结构改变;由Tauc/David-Mott公式计算得N-TiO_2/Ti网的禁带宽度约为2.76 eV,吸收带边红移至449 nm,可见光吸收性能明显增强.N-TiO_2/Ti板等价拉伸成3层叠加的N-TiO_2/Ti网后,DMP的降解率提高了7.5%;当叠加5层N-TiO_2/Ti网时,降解率趋于稳定,相比N-TiO_2/Ti板对DMP的降解率提升了25.7%;偏酸或偏碱性条件下,均有利于DMP的降解;外加H_2O_2可以明显促进DMP的降解,但H_2O_2在单独使用以及可见光辐照下均无法实现对DMP的有效降解.  相似文献   

17.
The dried gel of SrFe12O19, prepared by citrate approach, was investigated by means of infrared spectroscopy ( IR ), thermogravimetric analysis ( TG ), differential scanning calorimetry ( DSC ), X- ray diffraction( XRD ) techniques, energy dispersive spectroscopy( EDS ), and transmission electron microscopy( TEM ). The thermal instability and the thermal decomposition of low-temperature strontium M-type hexaferrite crystallized at about 600℃ were confirmed for the first time by XRD method. The decomposition of the low-temperature strontium M-type hexaferrite took place at about 688.6℃ determined by DSC investigation. The low-temperature strontium M-type hexaferrite nanopartieles were decomposed into SrFeO2.5 with an orthorthombic cell and Fe2O3 with a tetragonal cell as well as possibl α-Fe2O3 . The agglomerated particles with sizes less than 200 nm obtained at 800℃ were plesiomorphous to strontium M-type hexaferrite. The thermally stable strontium M-type hexaferrite nanopartieles with sizes less than 100um cotdd take place at 900 ℃ . Up to 1000 ℃ , the phose transformotion to form strontium M-type hexaferrite was ended, the calcinations with the sizes more than 1μm were composed of α-Fe2O3 and strontium M-type hexaferrite. The method of distinguishing γ-Fe2O3 with a spinel structure from Fe2O3 with tetragonal cells by using powder XRD method was proposed. Fe2O3 with tetragonal cells to be crystallized before the crystallization of thermally stable strontium M-type hexaferrite was confirmed for the first time. The reason why α- Fe2O3 as an additional phase appears in the calcinations is the cationic vacancy of stroutium M-type hexaferrite , SrFe12-x□O19 (0≤x ≤0.5).  相似文献   

18.
TiO2/Nb2O5 photocatalyst loaded with WO3 (WO3-TiO2/Nb2O5) was prepared by a modified hydrolysis process, and characterized by X-ray diffractometry, transmission electron microscopy, Raman spectra and UV-Vis diffuse refraction spectroscopy. The photocatalytic activity of WO3-TiO2/Nb2O5 was investigated by employing splitting of water for O2 evolution. The results indicate that WO3 loading can pronouncedly improve the photocatalytic activity of TiO2/Nb2O5 by using Fe3 as an electron acceptor under UV irradiation. The optimum molar fraction of the loaded WO3 is 2%, and the largest speed of O2 evolution for 2% WO3-TiO2/Nb2O5 catalyst is 151.8 μmol/(L·h).  相似文献   

19.
NiCr_2O_4(NCO)spinel composites with different Mn/Ni atomic ratios(Mn/Ni=0.05,0.10,0.15,and 0.20)were synthesized via solid state reaction method.Phase compositions and microstructure of samples were characterized by X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).The TG-DSC curves showed that the appropriate baking temperature for Mn-doped NCO spinel preparation was approximately 1 320℃.X-ray diffraction patterns exhibited the formation of NCO spinel with Fd-3m space group.Valence state of the Mn ions was determined from 2p and 3s X-ray photoelectron spectra.Manganese ions were mostly in divalent and trivalent states,and the ratio of Mn~(2+)/Mn~(3+)was 0.78-0.98.Fourier transform infrared spectroscopy(FTIR)was used to analyze the spectral emissivity of Mn doped NCO spinel.It was revealed that the infrared emissivity of Mn-doped NCO spinel in 1.8-5μm could be significantly enhanced with increasing content of Mn~(2+),reaching as high as 0.9398.Mn-doped NCO spinel showed excellent radiation performance and good prospect in high emissivity applications in the temperature range of 800-1 200℃.  相似文献   

20.
Vanadium trioxide (V2O3) was directly prepared by NaVO3 electrolysis in NaCl molten salts. Electrolysis products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The existing state and electrochemical behavior of NaVO3 were also studied. The results indicated that V2O3 can be obtained from NaVO3. VC and C were also formed at high cell voltage, high temperature, and long electrolysis time. During electrolysis, NaVO3 was dissociated to Na+ and VO3 ? in NaCl molten salt. NaVO3 was initially electro- reduced to V2O3 on cathode and Na2O was released simultaneously. Na2CO3 was formed due to the reaction between Na2O and CO2. The production of C was ascribed to the electro-reduction of CO3 2?. VC was produced due to the reaction between C and V2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号